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Abstract—The comparison of images of a patient to a refer-  Early studies explored ways to summarize the information
ence standard may enabl_e the identifi_cation of structural brain of each voxel vector into a scalar. This scalar information may
S?atr;?wi%r Tn'lzzzsc‘()i’gpaggo?; ag‘:Sy fg}"?lcﬁcﬁhiagﬁevg;el"eccéﬁrbe, for instance, Fractional Anisotropy (FA) [9] or Mean Dif-
be represented as anR”™ vector) such as Diffusion Tensor fus'v_'ty (MD) \_Nhen_processmg tensor images. Th_e ‘]aCOb'_an
Images (DTI) or transformations. The recent introduction of the ~Matrix determinant is also often used to gather the information
Log-Euclidean framework for diffeomorphisms and tensors has when studying transformations [10], [11]. However, the use
greatly simplified the use of these images by allowing all the of the full tensor rather than scalar parameters such as the
computations to be performed on a vector-space. However, many \ip or the FA has shown to be more effective in many cases
sources can result in a bias in the images, including disease or 121 151, [3]. The full Jacobi i | din th
imaging artifacts. [12], [5], [ ]. The ull Jacobian matrix was also used in the

In order to estimate and compensate for these sources of vari- COmputation of statistics on deformations [13]. Using the Log-
ability, we developed a new algorithm, called continuou§tapLE, Euclidean framework, Commowick et al. [12] showed the su-

that estimates the reference standard underlying a set of vector periority of using the whole Jacobian tensor as opposed to the
images. This method, based on an Expectation-Maximization geterminant to constrain non linear registration. Many studies

method similar in principle to the validation method STAPLE, . - .
also estimates for each image a set of parameters characterizingh‘f"ve then used the complete information from either the DTI

their bias and variance with respect to the reference standard. OF transformations to compute their statistics. For example,
We demonstrate how to use these parameters for the detection Fillard et al. [14] studied the brain variability and Lepore et
of atypical images or outliers in the population under study. We al. [5] presented statistical tests on the Jacobian tensors of
!dentified signif_icant differences_ between the tensors of diffu_sion deformations in the frame of an HIV/AIDS study. Finally,
images _of_ multlple s_cler05|s patients and those of control subjectsa growing literature emphasizes the use of the full tensor
in the vicinity of lesions. . . . .
. for voxel-wise comparison of patient groups with respect to
y Index TermsD—_ﬁtlas, SfTAPLE_, grou}?d”btrult(hi_ %Tpec(tjgtlon- controls. Whitcher et al. [3] introduced recently multivariate
; eanx(lrglzvagll%r;ﬁ on transformations, Kullback-Leibler diver-  p o1hesis testing for statistical group comparison using the
' ' Log-Euclidean framework. Verma et al. [15] and Khurd et
al. [16] further underlined the value, when computing such
. INTRODUCTION comparisons, to take into account the specific subspace formed

Datab i idel diod b i bé/ the observed tensors at each voxel. They therefore proposed
. atg ases ol Images are widely use .to' etect al norma ”l' Scapture the manifold of variation of the considered tensor
in patient images or specific characteristics of a populatiog

. . ) ata, using either Isomap manifold learning [15] or kernel-
either by computing average tensor derived parameters Meq approaches [16]

ROIs delineated on each patient [1], or based on their Stageveral factors can introduce bias and variance in the

tistical difference with respect to a reference frame [2], [3131nalysis of these images. First, the study generally requires non

[4], [5],' Directly processing vector. |rrj1vages (i-e. 3'? IMagefnear registration either to register the images on a reference
for which each voxel is a vector iR such as diffusion f

) DTI ‘ : Jacobi e d rame or to build the reference frame from a dataset of
Lensor 'mages (OTI), tra:ns ormations or ar(]:o lan matrix datg) g subjects. However, differences in acquisition protocols
OWEVET requires complex computation schemes to remain g, a6 mies may lead to registration discrepancies, therefore
the corresponding manifold (see [6] for tensors). Recently, t

Loa-Euclid f K introduced both f sulting in a bias on the transformed DTI or the Jacobian
og-Euclidean framework was introduced both for tensors [Y nsors. Other sources of bias and variance are the artifacts due

and diffeomorphisms [8], greatly simplifying the computationg, v, acquisition itself, for example movement artifacts or DTI

by allowing all of them to be performed on a vector-space. Wi tion. Applications of population studies involving vector

are therefore particularly interested in the study of these Vecfﬂ{ages are becoming increasingly common. Disease state may
images.

be recognizable as an atypical increase in bias or variance.
, _ o _Comparisons of individuals to population reference standard
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The simultaneous estimation of a reference standard asath imagei with a Gaussian probability density function
performance parameters was proposed in the context of ségscribing P(s;;|T}, 5;,A;). In our case, we choose to use
mentation validation.STAPLE [17] uses an EM algorithm a multivariate normal distribution:

[18], [19] to estimate iteratively the reference standard un-
derlying the expert segmentations and parameters for each
of tze gexperts. FzrherefcgJ]re, experts who zo not concur with (il T3 Bis M) = 61545,0, (545) = buyoni(T5) - (1)
_the prior knowledge_or the _general consensus (_for exammereuij = si; — B and ¢, A(x) is the probability density
images not well registered in an atlas construction procesghction of the normal distributiotV (12, A). The parameters of
have a smaller influence. Moreover, the parameters obtaingd images are grouped in a variafle= {B1, A1, ..., B1, Ar}
for each expert can be used to characterize his agreemgtnotation simplicity. As mentioned earlier, as the reference
(sensitivity and specificity) with respect to the consensus. Thigandard is unknown, an Expectation-Maximization algorithm
method was extended [20] in order to estimate the refererigeused to alternately estimate the paramet@rand the
standard together with bias and variance parameters for expgtiden reference standard. We will now describe in detail the
segmentations. However, this method was developed to usex@ectation and Maximization steps of our method.
set of scalar images. It is therefore not adapted to population
studies involving images with higher dimensional voxels su ) N
as DTI, Jacobian tensor images or diffeomorphisms. We thec%aE'eSStep‘ Estimation of the Reference Standard from the
fore present in this article a new method, called continuous 9
STAPLE, that estimates the reference standard and image palhe goal of the Expectation step is to compute the expected
rameters underlying a set of vector images using a similar E¥alue of the complete data log-likelihoa@(66*)) knowing
approach. We also propose a parameter comparison framewf image parameters at the preceding iterafign. Evalu-
in order to compute hypothesis tests to detect statisticafi§ing this expression requires the knowledge of the posterior
significant differences in the parameters. We present bel@igbability of the true scord™ P(T|S,6(). In our case,
an application of this algorithm to the study of DTl images ohe computation of this posterior probability is sufficient to
patients with multiple sclerosis and their comparison to contrBerform the Maximization step and it is therefore not necessary
subjects. to explicitly form Q(]6™)).
It is assumed that there is no spatial dependency between

Il. METHOD voxels, i.e. P(T|S,0%)) = T[, P(Ty]5,0%)). Using Bayes’

theorem and noting the true score is independent of the rater

A. Description of ContinuouSTAPLE bias and covariance$(7;|S,0*)) can then be expressed as
We observed a set dfvector images;, i.e. each voxej of  fgllows:

S; (si7) is a vector ofRY. All these images are assumed to be
an independent evaluation of a true vector image: the reference P(T:1S. 0% = P(S|IT:. %) P(T}) 2
standard. Our goal is then to estimate both this unknown (T315,67) (SIT3, )P(S\G(k>) @

reference standard as well as performance parameters for %ﬁgreP(Tj) is the prior distribution off;. Since the marginal

image ¢ in order to compare them. If the reference stangiibution of T;, P(T;|S,6%) integrates to 1, it can be
dard was known, then estimating the performance parameters ion as: :

for each image would be straightforward. However, as this
reference standard is unknown, we will use an Expectation-
Maximization approach [18], [19] in order to estimate the true
vector image and the performance parameters of the images.
The EM algorithm proceeds iteratively, alternating two steps: A large variety of distributions can be used for the prior
. E-Step: Estimate the expected value of the complete d&igtribution P(7j). In our case, we have chosen to use
log-likelihood and the reference standard from the @ multjlyarlate uniform distribution, with a scale parameter
known image parameters and their decisions See h = 1la= ha>
Section II-B. 1
« M-Step: Estimate the performance parameters of each P(Ty) = Un(T3) = 4)
image, knowing the current estimate of the reference
standard. See Section II-C.

As mentioned previously, we assume there Aremages,
each estimating an image consisting of voxels whose dimen- j

sion is N. For example, if N = 1, this type of image _ . o
can be the segmentations obtained by distance transfo%vn%erezj - ij I (buii),AEk”(TJ) 'S a normahzmg constan't.
also know that, in the absence of spatial correlations

or level-set approach. In higher dimensions, these could k] e
transformation vectorsN = 3) [8] or tensors in the Log- Petween VOXE'?k'I)D (S|1;,6') is a product of multivariate

Euclidean framework ;' = 6) [7]. We associate to eachGaussiansN (u;; ,AM), defined in Equation (1), where
image i an RY vector 3; (bias parameter) as well as amﬁ? = sl-j—ﬂ,f’“).We therefore obtain the posterior probability
N x N covariance matrixA;. In other words, we associateof T}:

P(T)P(S|T;,0%)
Jr, P(T;)P(S|T;,6%)

P(T;]5,6%)) = ©)

Equation (3) therefore simplifies to:

, 1
P(T;|8,6") = —-P(S|T;,0") (5)



whereJ corresponds to the number of voxels. Then, knowing
B*TY - assuming thatA ") s invertible and using the

expression from [21] tha% = AT (A s, AFTD

1
P(T310%) = - ][ 6,0 s (T))
G AL
(6) is given by the following:
)t

1 <H N (k) =2
= — [ TIem#a)
Zi \ %, AKFD _ (AT % S (13)
This probability is then a product over the image®f J

multivariate Gaussians and, (h+1

wherey;; = p; )+ﬁ§’““)—sij. As the first estimates for the
1 AE’“) are given by the user and symmetric, an interesting result

k k) — k
wj =5 Z(ng) ~T)T(AP) 1(#5;7) —T;) (7) seen in these last equations is that #& are guaranteed to

g remain symmetric over the successive E-steps and M-steps
Then, completing the square over this expression yieldstarations. When the dimensioN of the input images is 1,
multivariate Gaussian probability density function, i&. ~ i.e. scalar images are used, these expressions of the E and

N(u§k+1),A(’€+1>) with the following parameters: M-steps also simplify to the expressions given in [20].
(AFI)—1 = Z:(Az(.k))*1 (8) D. Framework for the Comparison of Image Parameters
: We have presented above a method to compute both a refer-
JEED A Z(A(k))_l (k) ©) ence standard from a dataset of vector images and parameters
Hi B — Hij describing the characteristics of each image with respect to

the underlying reference. These parameters can now be used

The new estimate of the covariance of the dlStrlbUtl@HCtl)) for the Comparison of the images : for examp|e' to detect

can therefore be seen as an harmonic mean of the individd@erences between them. In this section, we introduce a

covariance matriced ). The new estimate of the referenceomparison framework for the image parameters derived from

value at a voxeji (u§k+1)) can also be seen as an inverse rateie continuousSTAPLE algorithm.

covariance weighted sum of the bias corrected rater values. 1) Overview: We assume here that all the input images

are in the same reference frame. This can be achieved, for

C. M-Step: Optimization of the Image Parameters example, by their registration on an atlas or the construction
Given the new estimate of the posterior probabilitpf @n atlas from a population. Our comparison framework is

P(T|S,0%), the expected value of the complete data loghen divided in the following steps:

likelihood can be computed. The parameter estimates can them computation of bias and covariance parameters using

be computed in the M-step by maximizin@(6|6*)) with CONtiNUOUSSTAPLE,
respect to the parametefisi.e. « comparison of the distributions from the bias and covari-
ance parameters using Kullback-Leibler Divergence.
9+ = argmax Q(0]0%)) We assume that a set of imaggsis available, all of them
0 (10) aligned in the same reference frame. We then can use our

method to compute the reference standard underlying these
images together with the bia$ and covariance parameters
A; of each imagei. Depending on the specific application,
however, some pre-processing is required before employing
our method. Tensors do not belong to a vector space but to a
Riemannian manifold [6], requiring the use of an appropriate

= arggnax Z Z E (IOg(P(sij ‘Tj’ 9)))

Similar to [20], E (log(P(s;;]T},6))) can then be simpli-
fied:

E (log(P(si;|T5,0))) = 1log(|A;1\) computation framework so that the computed tensors remain
1 2 on the tensor manifold. The Log-Euclidean framework for
— =(s55 — ﬁi)TA;l(sij — Bi) tensors [7] has been proposed to this end, showing that
2 (1) performing all the Euclidean calculations on the logarithm of
—1, (k1) L —1 4 (k+1) b 9 ; © 109
+ (si — B)TA; lug- = 5 (Er(A7TAYTY) the tensors allows to remain on the tensor manifold. The same

(A D\T A —1 (k+1) type of preprocessing is also required when manipulating dif-
+ (u; ) A, K ) feomorphisms, this time using the Log-Euclidean framework
On computing the derivative of Equation (10) with respect ton diffeomorphisms [8].
the parameters, and then solving the system for a maximum, 2) Kullback-Leibler Divergence Statistic&nowing the pa-
the following expression for the bias parametaﬁé"“) is rameters for each image, we outline here a method to compare
found: the Gaussian probability density functions defined by them.
Each set of parameterg; and A;, describes a multivariate
B; = 1 Z(SU’ _ M;Hl)) (12) Gaussian probability density function as expressed in Eq. (1).
J J One possibility would be to directly compare the parameters



B; and A; but this would not reflect the different meaning ofA. Simulated Experiments

mean and covariance parameters. 1) Simulation Database:To evaluate our method with
We therefore utilize a framework based on the KuIIbacl?espect to a known ground truth and therefore be able to
Leibler Divergence (KLD) [22] to compare the probabilityquantitatively evaluate our results, we created a database of
distributions directly. First we compute the mean parameterseontrol simulated DTI images. This database is illustrated in
and A. We then form the distribution of the mean parametefsg. 1. These illustrations, as well as the others in this article,
N(B3,A). Hence, we obtain the following expressions: were obtained using the visualization interface MedINRIA
[23]. The database is composed of 20 2D imags 40)
~ 1 and is divided into two groups. Each group was generated
g = 7 Zﬁi (14)  from the known ground truth (image (a) in Fig. 1), by adding
i=1 a multivariate Gaussian noise with different parameters. The
1 _ _ first group (example in image (b)) was generated by using
A= T Z (Ai + (B =66 - 52')T) (15) a mean of0.2 and a variance 06.2 for each component of
=1 the log-tensors, while the parameters were a mean- @
where I is the number of images used BrapLE. We can and variance of).2 for the second group (example in image
now compare the probability density functions described lfg)). The additive noise was applied on the Log-Euclidean
each set of image parametef§;, A;) with respect to the representation of the tensors as this allows us to stay on the
mean normal density. This is done using the KLD, whickensor manifold.
is expressed as follows when comparing two multivariate
Gaussian distributions:

D(Ny||Ny) = % (log(/[t;) +tr(A7 M Ag)
(16)

+ (1 = o) TAT (1 = pao) — N)

We then obtain a set okK'L; = D (N (8;,A:)|[N(B,A))
from the images. This allows us to look for significant differ-
ences using an outlier-identification method. Since the sample
distribution of K L; is approximately normalwhen the number g
of images is sufficiently large, we compute its meap;, and
varianceA?% ;. Then, each Kullback-Leibler divergence value
is compared to this univariate normal distribution. For each@gg
imagei, we test the parametef§; to see if they are likely to R
be a sample from the normal distributiof(sx 1., A% ;). This
is done by computing the area outside the bell of the Gaussia
pi = P(X| > W) where X follows a normal
distribution N (0, 1). For a univariate normal distribution, this
expression simplifies to the following:

1 |KL; _/~LKL>
j=1—erf | —————
b (\@ Akr,

A small p; will therefore indicate a small probability for the
parameters extracted from image to agree with the other
images. Thigp; can also be viewed as the p-value of a z-test§
where the sample size of the tested population is 1. These
consequently allow outliers or atypical images to be identified NS

17)

1. RESULTS

We present two applications of our work. First, we have
created a database of simulated noisy DTI images, together
with a group of outliers. We used this simulated database fiy. 1. Simulated Database of Tensor Imagesiliustration of the images

order to evaluate the results of our method and compare th d in our simulation: (a): Ground truth ; (b), (c): examples of noisy images
rom the first (bias0.2, variance0.2) and second group (bias:0.2, variance

with _the average DTI image obtained by the FlaSSicaI |_-0_g.“2) of database samples ; (d): Outlier reference image ; (e), (f) : examples
Euclidean mean. We present here the evaluation, on clinio&hoisy outliers (bias0.2, variance0.2 ; and bias:—0.2, variance0.2).

images, of local tensor differences in multiple sclerosis (MS)
patients with respect to a database of control subjects. We then added to this database a group of 4 outliers created



by adding a multivariate Gaussian noise to a reference outlike mean tensors are rotated clockwise and sometimes appear
image (illustrated in image (d)), in which each tensor has beswollen when compared to the reference tensors. The use of
rotated by an angle of 7 /4 about the z-axis (going throughour method, however, provides a much more accurate result,
the image on Fig. 1). To further test the capabilities of owvith the tensors in images (c) and (f) being more similar to
outlier detection method, we used two different sets of noislee reference. These qualitative results were confirmed quan-
parameters (bias @f.2 and variance 06.2 for images 21 and titatively by computing the average Log-Euclidean distance
22 ; bias of—0.2 and variance of).2 for images 23 and 24) between the computed averages and the reference image. The
to generate the outlier images illustrated in images (e) and (@jstance wag).11 for the STAPLE average and.221 for the

2) Evaluation of the ResultsJsing this database of simu-Log-Euclidean mean: the average error with our new method
lated DTI tensors, we compared the results that were attairnsdetter by a factor 0£.02.
using a classical Log-Euclidean average [7] and the “groundWe then evaluated the parameters obtained by our method
truth” obtained using our continuoUSTAPLE. To do so, we and used our framework to try to detect the outlier images
supposed that the outlier images were not known and addedong the database. The parameters obtained for the two
them to the database as images 21 to 24. We then compujenlips of control images were very close to those used to
the Log-Euclidean average and ttf®rAPLE ground truth generate the images. For example, the mean of the bias
estimation from these 24 patients. The results are illustratpdrameters obtained for the first group0ig922 + 0.0207,
and compared with the reference image in Fig. 2. which includes the reference value 6f2. For the second
group, the mean bias found 50.2079 4+ 0.0214, which again
includes the reference value ef0.2.

Finally, to evaluate our Kullback-Leibler comparison frame-
work, we computed the Gaussian scores for each image of the
database with respect to the mean distribution of errors. We
report the results in Table I. This table shows the capabilities
of our framework to detect the outliers among a database. The
Gaussian scores for the control images are large, ranging from
0.591 to 0.777, while the scores of the outliers (images 21 to
24) are much smaller, below the limit 6f05 and ranging from
0.018 to 0.04, therefore identifying them as outliers. Moreover,
our framework identified both groups of outliers, even though
their noise parameters were different.

r 4
A\

g 7777

Subj. #| Score|| Subj. #| Score|| Subj. #| Score

1 0.619 9 0.694 17 0.777
0.614 10 0.663 18 0.634
0.714 11 0.654 19 0.624
0.601 12 0.732 20 0.697
0.607 13 0.652 21 0.018
0.644 14 0.768 22 0.028
0.648 15 0.716 23 0.040
0.591 16 0.621 24 0.035

ryrrrs s 7

QN OO W N

TABLE |
PARAMETER EVALUATION RESULTS ON THE SIMULATED DATABASE.
GAUSSIAN SCORES BETWEEN EACH IMAGE AND THE MEAN PARAMETERS
OF THE DATABASE USING THEKLD-BASED EVALUATION FRAMEWORK
(SEeEQ. (17)).
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»” 4 B. Evaluation of Tensor Differences in Multiple Sclerosis
®) Patients

We now present the evaluation of tensor differences in mul-

Fig. 2. Comparison of STAPLE and Log-Euclidean Mean ResultsResults tiple sclerosis (MS) patients with respect to control subjects.

obtained from the whole simulated database (20 control images and 4 outlig&@ mentioned previously our method requires a reference
(a): Reference noiseless image (zoom in image (d)) ; (b): Log-Euclidean mefan . . ’ . .

result (zoom in image (e)) ; (CBTAPLE ground truth (zoom in image (f)). fame on Wh|C_h the images are registered. The DTI analysis

therefore require two steps:
In this figure, we can see that the Log-Euclidean average. construction of a mean DTI atlas from the control subjects
(images (b) and (e)) is affected both by the noise in the that will be used as the reference frame for the study (see

database and by the presence of the 4 outliers. As a result, Section IlI-B2),




« registration of the MS patients onto the atlas and usq
of our framework to analyze the regions of lesions (seq
Section 111-B3).

1) DTI Databases:We have used two databases of imageq

in our experiments. The first database was composed of 3
T1 images (size256 x 256 x 175 with a resolution ofl x
1 x 1.3 mm?3, illustrated on Fig. 3) and associated DTI of the
brain for 20 normal adult subjects (with an original size of
256 x 256 x 60 and resolution ofl x 1 x 2 mm3).

(© (d)

Fig. 4. Examples of the Multiple Sclerosis DatabaseAxial slices of four
patients T1 images, registered using a global affine transformation on an atlas.

using the polar decomposition of the Jacobian malfrix VT
[27]. The polar decomposition theorem states that any nonsin-
gular square matrix can be decomposed into a rigid rotation
componentR and a deformation componebt J = UR.
2) Mean DTI Atlas ConstructionAs mentioned in Section

(d) [I-D, we needed to transfer all the DTI onto the same reference
Fig. 3. Examples of Subjects from the Normal DatabaseAxial slices frame in order to use continuo& APLE on these databases.
showing four subjects T1 images of the normal subjects database registdd&ing any subject as a reference would introduce a bias due
using a global affine transformation on an atlas. to the specific anatomy of the reference image. We therefore

. ] chose to build an unbiased atlas from the dataset of controls,
The second dataset was composed of 8 patients (illustraggy ,se it as the reference for our future evaluations. The

on Fig. 4) exhibiting multiple sclerosis lesions in the brain,gnsiryction of the DTI atlas is divided into two main steps:
Both DTl and T1 images were acquired with the same size

and resolution characteristics as for the first database. Thé con;trugtlon of an average T1image frqm the T1 images,
FLAIR images were also added in this database and were' application of the obtained transformations to the DTI.
used together with the T1 images to manually delineate theWe have chosen to compute the atlas using a block-matching
lesions in each 3D patient image. based non linear registration of the anatomical T1 images [28]
Some preprocessing was performed on both databases. Fastjt was readily available in our laboratory. However, the
the skull of each brain was removed automatically for botproposed algorithm is independent of the choice of the reg-
databases using the BET algorithm [24]. We are only interestistration algorithm. Therefore, recent tensor based registration
in the study of the brain and removing the skull allows for algorithms taking into account the tensors specific information
better registration of the structures close to it. [29], [30], [31], [32] could also be used. This would result in
Then, the DTI of each patient was registered on th& simplification of the atlas construction, requiring only to
corresponding T1 image. This was done in two steps: finstilize the atlas construction framework proposed by [33] on
a global affine transformation was found between the Tthe DTI images.
image and the mean diffusivity image of the DTI using [25]. The construction of the average T1 image was done using
Then, a second step optimized a B-Splines transformatian unbiased atlas construction method proposed by Guimond
using FFD registration [26]. Finally, the tensors were moveet al. [33]. This algorithm basically iterates over the fol-
and reoriented according to the transformations. It is usualwing steps: at each iteratioiy all the imagesl; are non
assumed that the structure of the tensor should not chatigearly registered on a reference imagg therefore finding
with the transformation [27]. Therefore, only a local rotatiotransformationsl},, and bringing them orR;. Then, a mean
R should be applied to the tensér: D’ = RDRT. For the imageM; can be built from these registered images simply by
non linear transformation, this local rotation was computeleraging the intensities of the images. At the same time, the




non linear transformatiorig;, are averaged and inverted using Subj. # | Score|| Subj. #| Score| Subj. #| Score
the Log-Euclidean framework for diffeomorphisms [8] to get 1 0.294 8 0.561 15 0.934

a transformatio ', i.e.T ' = exp(—+ 3, log(T})). This 2 | 0282 9 [0667 ] 16 [2x10°"
inverse average transformation is then applied Mo and 3 0.867 10 | 0.807 17 0.652
used as the new reference imafige.; for the next iteration: 4 0.633 11 | 0.907 18 0.259
Rioy = M,oT . 5 | 0657 12 | 0003 | 19 | 0053
This iterative process is complete when the variation be- 6 0.792 13 ] 0.984 20 0.640
7 0.858 14 0.970

tween successive mean images is sufficiently small, i.e. wh
the difference between the mean transformatiGhst two TABLE I
.SUCCGSSNe |teraF|0nS are Sma” AE the end. Of the average T]PARAMETER EVALUATION RESULTS ON THE NORMAL SUBJECTS
Image construction, a mean imagé is obtained as well as DATABASE . GAUSSIAN SCORES BETWEEN EACH SUBJECT AND THE MEAN
transformations’;, deforming each imagd, on M. These PARAMETERS OF THE ATLAS USING THEKLD-BASED EVALUATION

. . - . FRAMEWORK (SEEEQ. (17)) SHOWING AN OUTLIER SUBJECT DUE TO
qbtalned transformations are thgn applu_sd to the tensor images REGISTRATION DISCREPANCIES
(in the same way as shown in Section 11I-B1), therefore
obtaining a set of DTIDT';, in the same reference frame.

[
=}

« application of the transformation to the patient tensors,

o use of continuousSTAPLE (over a predefined region of
interest) on the patient DTI pooled with the atlas DTls,

o patient results computation using the KLD evaluation
framework.

The patient was registered in two steps on the atlas. First,
a global affine transformation was computed. Then, a non
linear registration was performed to align locally the anatomies

b of the atlas and of the patient. As intensities in voxels with

(@) (b) : ) >

lesions are different from those of the atlas, the registration

Fig. 5. Mean Tensor Image associated to the Mean AtlasAxial slices Was performed in . slightly di.ﬁerem way as it_ was done for

showing (a) the average T1 image and (b) the mean tensors obtained uging atlas construction, following a method similar to [34].
our method superimposed on the atlas. No correspondences were computed inside a dilated mask
OUr CONtiNUOUSSTAPLE was used on the loa-tensors of th of the patient’s lesions and the transformation was therefore
reqistered DTI. Afterward N exponenti tign i ) Videfnterpolated from neighboring regions. This method allows to
egistere - Allerwards, an exponentiation Step pro e into account abnormalities in lesions signal so that they

the reference stan_dard_ tensors. As an |IIus_trat|on of t id not generate registration artifacts in the evaluated data.
process, we show in Fig. 5 the average T1 image obtaine h . . .
e computed non linear transformation was then applied

from the database of 20 subjects, as well as an axial Sl'cetgfthe patient's DTI. We used continuoSsAPLE over the set

the mean tensors obtained using COﬂj[InuS[[LSPLE. . . of DTI from the normal subjects and added the transformed
We also performed the KLD evaluation proposed in Secti : : .
| of the patient among the images. The algorithm was only

[I-D on the 20 sets of parameters obtained from continUOLrJEn on a subregion of the images. i.e. on the 3D masks of
STAPLE. The obtained Gaussian scores (see Eq. (17)), PE- g ges, 1.

sented in Table II, showed that 19 of the 20 normal subjecﬁe patient’s lesions. We therefore obtained parameters for all

had similar results and were not significantly different from th%? the subjects and the patient, and used them in our image

. : ) ....comparison framework to test for a significant difference
mean reference standard population, with their prObab'“t'%sétween the normal parameters and those of the patient

ranging from 0.259 to 0.984. However, subject 16, image We show the results of this evaluation, repeated for the 8

. o 2 -
(d) on Fig. 3, had a probability of x 107, pointing out tients of the database, in Table Ill. The obtained probabilities

a significant difference in this subject compared to the rest g’?the patient parameters belonging to the mean Gaussian in

the population. This difference is due to the specific anatonc%r experiments were very small for all the patients. ranain
of the subject. This subject’s ventricles are indeed much Iarqer P y b ' 9ing

; L ) from 9.4 x 10789 to 1.6 x 10~%. This shows, therefore, that
than any of the others in the database, resulting in reg|strat|%n . Lo . . ,
. . L . . { Iere exists a significant difference between the MS patients
discrepancies and in significant differences in the tranSfOrmf%—znsors and the normal subjects’ tensors in the lesions regions.

tensors.
3) DTI Analysis of Multiple Sclerosis Patient©nce we
created this atlas, the second step of our DTI analysis was to IV. CONCLUSION

use it as a reference frame for the evaluation of the tensorspe have presented a new method, called contini®us
inside the lesions of MS patients. To this end, we hava g, to compute a reference standard from a set of vector
followed, for each of the patients taken separately in the M§ tensor images (i.e. where each voxel of the image can
database, the following process: be represented as @ vector) and parameters describing
« Nnon linear registration moving the patient T1 image ontihe bias and covariance of each image with respect to this
the atlas, reference. This algorithm was associated to a framework



Patient # Score Patient # Score
1 1.6 x 10~* 5 2.3 x 10787
2 9.4x10~%9 6 1.1x 1012
3 3.8 x 1079 7 1.4 x 10783
4 1.6 x 10738 8 3.1x 10716
TABLE Il

PARAMETER EVALUATION RESULTS ON THE MS PATIENTS DATABASE.
GAUSSIAN SCORES BETWEEN THEVMIS PATIENTS AND THE REFERENCE
STANDARD TENSORS ON THEMS LESION REGIONS ALL VALUES SHOW A
STRONG DISAGREEMENT BETWEEN THEMS LESIONS TENSORS AND THE
CONTROL PATIENTS TENSORS

of this framework to the computation of voxelwise statistics,
for example using blocks around each voxel, would further
improve the power of this method allowing for the auto-
matic detection of the regions where statistically significant
differences exist. This would take into account the different
local variabilities and therefore reduce the number of false
negatives, particularly when the region of interest is large (e.qg.
when the study is performed on the whole white matter). This
extended framework could then be an invaluable tool for the
comparison of populations, the characterization of pathologies
and of their evolution in response to treatment.
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