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Abstract—The comparison of images of a patient to a refer-
ence standard may enable the identification of structural brain
changes. These comparisons may involve the use of vector
or tensor images (i.e. 3D images for which each voxel can
be represented as anRN vector) such as Diffusion Tensor
Images (DTI) or transformations. The recent introduction of the
Log-Euclidean framework for diffeomorphisms and tensors has
greatly simplified the use of these images by allowing all the
computations to be performed on a vector-space. However, many
sources can result in a bias in the images, including disease or
imaging artifacts.

In order to estimate and compensate for these sources of vari-
ability, we developed a new algorithm, called continuousSTAPLE ,
that estimates the reference standard underlying a set of vector
images. This method, based on an Expectation-Maximization
method similar in principle to the validation method STAPLE ,
also estimates for each image a set of parameters characterizing
their bias and variance with respect to the reference standard.

We demonstrate how to use these parameters for the detection
of atypical images or outliers in the population under study. We
identified significant differences between the tensors of diffusion
images of multiple sclerosis patients and those of control subjects
in the vicinity of lesions.

Index Terms—Atlas, STAPLE , ground truth, Expectation-
Maximization, DTI, transformations, Kullback-Leibler diver-
gence, validation.

I. I NTRODUCTION

Databases of images are widely used to detect abnormalities
in patient images or specific characteristics of a population,
either by computing average tensor derived parameters on
ROIs delineated on each patient [1], or based on their sta-
tistical difference with respect to a reference frame [2], [3],
[4], [5]. Directly processing vector images (i.e. 3D images
for which each voxel is a vector inRN such as diffusion
tensor images (DTI), transformations or Jacobian matrix data)
however requires complex computation schemes to remain on
the corresponding manifold (see [6] for tensors). Recently, the
Log-Euclidean framework was introduced both for tensors [7]
and diffeomorphisms [8], greatly simplifying the computations
by allowing all of them to be performed on a vector-space. We
are therefore particularly interested in the study of these vector
images.
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Early studies explored ways to summarize the information
of each voxel vector into a scalar. This scalar information may
be, for instance, Fractional Anisotropy (FA) [9] or Mean Dif-
fusivity (MD) when processing tensor images. The Jacobian
matrix determinant is also often used to gather the information
when studying transformations [10], [11]. However, the use
of the full tensor rather than scalar parameters such as the
MD or the FA has shown to be more effective in many cases
[12], [5], [3]. The full Jacobian matrix was also used in the
computation of statistics on deformations [13]. Using the Log-
Euclidean framework, Commowick et al. [12] showed the su-
periority of using the whole Jacobian tensor as opposed to the
determinant to constrain non linear registration. Many studies
have then used the complete information from either the DTI
or transformations to compute their statistics. For example,
Fillard et al. [14] studied the brain variability and Lepore et
al. [5] presented statistical tests on the Jacobian tensors of
deformations in the frame of an HIV/AIDS study. Finally,
a growing literature emphasizes the use of the full tensor
for voxel-wise comparison of patient groups with respect to
controls. Whitcher et al. [3] introduced recently multivariate
hypothesis testing for statistical group comparison using the
Log-Euclidean framework. Verma et al. [15] and Khurd et
al. [16] further underlined the value, when computing such
comparisons, to take into account the specific subspace formed
by the observed tensors at each voxel. They therefore proposed
to capture the manifold of variation of the considered tensor
data, using either Isomap manifold learning [15] or kernel-
based approaches [16].

Several factors can introduce bias and variance in the
analysis of these images. First, the study generally requires non
linear registration either to register the images on a reference
frame or to build the reference frame from a dataset of
control subjects. However, differences in acquisition protocols
or anatomies may lead to registration discrepancies, therefore
resulting in a bias on the transformed DTI or the Jacobian
tensors. Other sources of bias and variance are the artifacts due
to the acquisition itself, for example movement artifacts or DTI
distortion. Applications of population studies involving vector
images are becoming increasingly common. Disease state may
be recognizable as an atypical increase in bias or variance.
Comparisons of individuals to population reference standard
databases would be facilitated by the ability to identify and
compensate for such sources of bias and variance.
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The simultaneous estimation of a reference standard and
performance parameters was proposed in the context of seg-
mentation validation.STAPLE [17] uses an EM algorithm
[18], [19] to estimate iteratively the reference standard un-
derlying the expert segmentations and parameters for each
of the experts. Therefore, experts who do not concur with
the prior knowledge or the general consensus (for example
images not well registered in an atlas construction process)
have a smaller influence. Moreover, the parameters obtained
for each expert can be used to characterize his agreement
(sensitivity and specificity) with respect to the consensus. This
method was extended [20] in order to estimate the reference
standard together with bias and variance parameters for expert
segmentations. However, this method was developed to use a
set of scalar images. It is therefore not adapted to population
studies involving images with higher dimensional voxels such
as DTI, Jacobian tensor images or diffeomorphisms. We there-
fore present in this article a new method, called continuous
STAPLE, that estimates the reference standard and image pa-
rameters underlying a set of vector images using a similar EM
approach. We also propose a parameter comparison framework
in order to compute hypothesis tests to detect statistically
significant differences in the parameters. We present below
an application of this algorithm to the study of DTI images of
patients with multiple sclerosis and their comparison to control
subjects.

II. M ETHOD

A. Description of ContinuousSTAPLE

We observed a set ofI vector imagesSi, i.e. each voxelj of
Si (sij) is a vector ofRN . All these images are assumed to be
an independent evaluation of a true vector image: the reference
standard. Our goal is then to estimate both this unknown
reference standard as well as performance parameters for each
image i in order to compare them. If the reference stan-
dard was known, then estimating the performance parameters
for each image would be straightforward. However, as this
reference standard is unknown, we will use an Expectation-
Maximization approach [18], [19] in order to estimate the true
vector image and the performance parameters of the images.
The EM algorithm proceeds iteratively, alternating two steps:

• E-Step: Estimate the expected value of the complete data
log-likelihood and the reference standardT from the
known image parameters and their decisionssij . See
Section II-B.

• M-Step: Estimate the performance parameters of each
image, knowing the current estimate of the reference
standard. See Section II-C.

As mentioned previously, we assume there areI images,
each estimating an image consisting of voxels whose dimen-
sion is N . For example, ifN = 1, this type of image
can be the segmentations obtained by distance transforms
or level-set approach. In higher dimensions, these could be
transformation vectors (N = 3) [8] or tensors in the Log-
Euclidean framework (N = 6) [7]. We associate to each
image i an RN vector βi (bias parameter) as well as an
N × N covariance matrixΛi. In other words, we associate

each imagei with a Gaussian probability density function
describingP (sij |Tj , βi,Λi). In our case, we choose to use
a multivariate normal distribution:

P (sij |Tj , βi,Λi) = φTj+βi,Λi
(sij) = φµij ,Λi

(Tj) (1)

whereµij = sij − βi and φµ,Λ(x) is the probability density
function of the normal distributionN(µ, Λ). The parameters of
the images are grouped in a variableθ = {β1,Λ1, ..., βI , ΛI}
for notation simplicity. As mentioned earlier, as the reference
standard is unknown, an Expectation-Maximization algorithm
is used to alternately estimate the parametersθ and the
hidden reference standard. We will now describe in detail the
Expectation and Maximization steps of our method.

B. E-Step: Estimation of the Reference Standard from the
Images

The goal of the Expectation step is to compute the expected
value of the complete data log-likelihoodQ(θ|θ(k)) knowing
the image parameters at the preceding iterationθ(k). Evalu-
ating this expression requires the knowledge of the posterior
probability of the true scoreT : P (T |S, θ(k)). In our case,
the computation of this posterior probability is sufficient to
perform the Maximization step and it is therefore not necessary
to explicitly form Q(θ|θ(k)).

It is assumed that there is no spatial dependency between
voxels, i.e.P (T |S, θ(k)) =

∏
j P (Tj |S, θ(k)). Using Bayes’

theorem and noting the true score is independent of the rater
bias and covariances,P (Tj |S, θ(k)) can then be expressed as
follows:

P (Tj |S, θ(k)) = P (S|Tj , θ
(k))

P (Tj)
P (S|θ(k))

(2)

whereP (Tj) is the prior distribution ofTj . Since the marginal
distribution of Tj , P (Tj |S, θ(k)) integrates to 1, it can be
rewritten as:

P (Tj |S, θ(k)) =
P (Tj)P (S|Tj , θ

(k))∫
Tj

P (Tj)P (S|Tj , θ(k))
(3)

A large variety of distributions can be used for the prior
distribution P (Tj). In our case, we have chosen to use
a multivariate uniform distribution, with a scale parameter
h =

∏N
a=1 ha,

P (Tj) = Uh(Tj) =
1
h

(4)

Equation (3) therefore simplifies to:

P (Tj |S, θ(k)) =
1
Zj

P (S|Tj , θ
(k)) (5)

whereZj =
∫

Tj

∏
i φ

µ
(k)
ij ,Λ

(k)
i

(Tj) is a normalizing constant.

We also know that, in the absence of spatial correlations
between voxels,P (S|Tj , θ

(k)) is a product of multivariate
GaussiansN(µ(k)

ij , Λ(k)
i ), defined in Equation (1), where

µ
(k)
ij = sij−β

(k)
i . We therefore obtain the posterior probability

of Tj :
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P (Tj |θ(k)) =
1
Zj

∏

i

φ
µ

(k)
ij ,Λ

(k)
i

(Tj)

=
1
Zj

(∏

i

(2π)−
N
2 |Λ(k)

i |− 1
2

)
exp(wj)

(6)

This probability is then a product over the imagesi of
multivariate Gaussians and,

wj = −1
2

∑

i

(µ(k)
ij − Tj)T (Λ(k)

i )−1(µ(k)
ij − Tj) (7)

Then, completing the square over this expression yields a
multivariate Gaussian probability density function, i.e.Tj ∼
N(µ(k+1)

j , Λ(k+1)) with the following parameters:

(Λ(k+1))−1 =
∑

i

(Λ(k)
i )−1 (8)

µ
(k+1)
j = Λ(k+1)

(∑

i

(Λ(k)
i )−1µ

(k)
ij

)
(9)

The new estimate of the covariance of the distribution (Λ(k+1))
can therefore be seen as an harmonic mean of the individual
covariance matricesΛ(k)

i . The new estimate of the reference
value at a voxelj (µ(k+1)

j ) can also be seen as an inverse rater
covariance weighted sum of the bias corrected rater values.

C. M-Step: Optimization of the Image Parameters

Given the new estimate of the posterior probability
P (T |S, θ(k)), the expected value of the complete data log-
likelihood can be computed. The parameter estimates can then
be computed in the M-step by maximizingQ(θ|θ(k)) with
respect to the parametersθ, i.e.

θ(k+1) = arg max
θ

Q(θ|θ(k))

= arg max
θ

∑

i

∑

j

E (log(P (sij |Tj , θ)))
(10)

Similar to [20], E (log(P (sij |Tj , θ))) can then be simpli-
fied:

E (log(P (sij |Tj , θ))) =
1
2

log(|Λ−1
i |)

− 1
2
(sij − βi)T Λ−1

i (sij − βi)

+ (sij − βi)T Λ−1
i µ

(k+1)
j − 1

2
(tr(Λ−1

i Λ(k+1))

+ (µ(k+1)
j )T Λ−1

i µ
(k+1)
j )

(11)

On computing the derivative of Equation (10) with respect to
the parametersθ, and then solving the system for a maximum,
the following expression for the bias parametersβ

(k+1)
i is

found:

βi =
1
J

∑

j

(sij − µ
(k+1)
j ) (12)

whereJ corresponds to the number of voxels. Then, knowing
β

(k+1)
i , assuming thatΛ(k+1)

i is invertible and using the

expression from [21] that ∂|Λ−1
i |

∂(Λ−1
i )ml

= |Λ−1
i |(Λi)ml, Λ(k+1)

i

is given by the following:

Λ(k+1)
i = (Λ(k+1))> +

1
J

∑

j

γijγ
>
ij (13)

whereγij = µ
(k+1)
j +β

(k+1)
i −sij . As the first estimates for the

Λ(k)
i are given by the user and symmetric, an interesting result

seen in these last equations is that theΛ(k)
i are guaranteed to

remain symmetric over the successive E-steps and M-steps
iterations. When the dimensionN of the input images is 1,
i.e. scalar images are used, these expressions of the E and
M-steps also simplify to the expressions given in [20].

D. Framework for the Comparison of Image Parameters

We have presented above a method to compute both a refer-
ence standard from a dataset of vector images and parameters
describing the characteristics of each image with respect to
the underlying reference. These parameters can now be used
for the comparison of the images ; for example, to detect
differences between them. In this section, we introduce a
comparison framework for the image parameters derived from
the continuousSTAPLE algorithm.

1) Overview: We assume here that all the input images
are in the same reference frame. This can be achieved, for
example, by their registration on an atlas or the construction
of an atlas from a population. Our comparison framework is
then divided in the following steps:

• computation of bias and covariance parameters using
continuousSTAPLE,

• comparison of the distributions from the bias and covari-
ance parameters using Kullback-Leibler Divergence.

We assume that a set of imagesS̃i is available, all of them
aligned in the same reference frame. We then can use our
method to compute the reference standard underlying these
images together with the biasβi and covariance parameters
Λi of each imagei. Depending on the specific application,
however, some pre-processing is required before employing
our method. Tensors do not belong to a vector space but to a
Riemannian manifold [6], requiring the use of an appropriate
computation framework so that the computed tensors remain
on the tensor manifold. The Log-Euclidean framework for
tensors [7] has been proposed to this end, showing that
performing all the Euclidean calculations on the logarithm of
the tensors allows to remain on the tensor manifold. The same
type of preprocessing is also required when manipulating dif-
feomorphisms, this time using the Log-Euclidean framework
on diffeomorphisms [8].

2) Kullback-Leibler Divergence Statistics:Knowing the pa-
rameters for each image, we outline here a method to compare
the Gaussian probability density functions defined by them.
Each set of parameters,βi and Λi, describes a multivariate
Gaussian probability density function as expressed in Eq. (1).
One possibility would be to directly compare the parameters
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βi andΛi but this would not reflect the different meaning of
mean and covariance parameters.

We therefore utilize a framework based on the Kullback-
Leibler Divergence (KLD) [22] to compare the probability
distributions directly. First we compute the mean parametersβ̄
and Λ̄. We then form the distribution of the mean parameters
N(β̄, Λ̄). Hence, we obtain the following expressions:

β̄ =
1
I

I∑

i=1

βi (14)

Λ̄ =
1
I

I∑

i=1

(
Λi + (β̄ − βi)(β̄ − βi)T

)
(15)

where I is the number of images used inSTAPLE. We can
now compare the probability density functions described by
each set of image parameters(βi,Λi) with respect to the
mean normal density. This is done using the KLD, which
is expressed as follows when comparing two multivariate
Gaussian distributions:

D(N0‖N1) =
1
2

(
log(

|Λ1|
|Λ0| ) + tr(Λ−1

1 Λ0)

+ (µ1 − µ0)T Λ−1
1 (µ1 − µ0)−N

) (16)

We then obtain a set ofKLi = D
(
N(βi, Λi)‖N(β̄, Λ̄)

)
from the images. This allows us to look for significant differ-
ences using an outlier-identification method. Since the sample
distribution ofKLi is approximately normalwhen the number
of images is sufficiently large, we compute its meanµKL and
varianceΛ2

KL. Then, each Kullback-Leibler divergence value
is compared to this univariate normal distribution. For each
imagei, we test the parametersKLi to see if they are likely to
be a sample from the normal distributionN(µKL,Λ2

KL). This
is done by computing the area outside the bell of the Gaussian:
pi = P (|X| > |KLi−µKL|

ΛKL
), where X follows a normal

distributionN(0, 1). For a univariate normal distribution, this
expression simplifies to the following:

pi = 1− erf
(

1√
2
|KLi − µKL|

ΛKL

)
(17)

A small pi will therefore indicate a small probability for the
parameters extracted from imagẽSi to agree with the other
images. Thispi can also be viewed as the p-value of a z-test
where the sample size of the tested population is 1. Thesepi

consequently allow outliers or atypical images to be identified.

III. R ESULTS

We present two applications of our work. First, we have
created a database of simulated noisy DTI images, together
with a group of outliers. We used this simulated database in
order to evaluate the results of our method and compare them
with the average DTI image obtained by the classical Log-
Euclidean mean. We present here the evaluation, on clinical
images, of local tensor differences in multiple sclerosis (MS)
patients with respect to a database of control subjects.

A. Simulated Experiments

1) Simulation Database:To evaluate our method with
respect to a known ground truth and therefore be able to
quantitatively evaluate our results, we created a database of
control simulated DTI images. This database is illustrated in
Fig. 1. These illustrations, as well as the others in this article,
were obtained using the visualization interface MedINRIA
[23]. The database is composed of 20 2D images (40 × 40)
and is divided into two groups. Each group was generated
from the known ground truth (image (a) in Fig. 1), by adding
a multivariate Gaussian noise with different parameters. The
first group (example in image (b)) was generated by using
a mean of0.2 and a variance of0.2 for each component of
the log-tensors, while the parameters were a mean of−0.2
and variance of0.2 for the second group (example in image
(c)). The additive noise was applied on the Log-Euclidean
representation of the tensors as this allows us to stay on the
tensor manifold.

(a) (d)

(b) (e)

(c) (f)

Fig. 1. Simulated Database of Tensor Images. Illustration of the images
used in our simulation: (a): Ground truth ; (b), (c): examples of noisy images
from the first (bias:0.2, variance0.2) and second group (bias:−0.2, variance
0.2) of database samples ; (d): Outlier reference image ; (e), (f) : examples
of noisy outliers (bias:0.2, variance0.2 ; and bias:−0.2, variance0.2).

We then added to this database a group of 4 outliers created
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by adding a multivariate Gaussian noise to a reference outlier
image (illustrated in image (d)), in which each tensor has been
rotated by an angle of−π/4 about the z-axis (going through
the image on Fig. 1). To further test the capabilities of our
outlier detection method, we used two different sets of noise
parameters (bias of0.2 and variance of0.2 for images 21 and
22 ; bias of−0.2 and variance of0.2 for images 23 and 24)
to generate the outlier images illustrated in images (e) and (f).

2) Evaluation of the Results:Using this database of simu-
lated DTI tensors, we compared the results that were attained
using a classical Log-Euclidean average [7] and the “ground
truth” obtained using our continuousSTAPLE. To do so, we
supposed that the outlier images were not known and added
them to the database as images 21 to 24. We then computed
the Log-Euclidean average and theSTAPLE ground truth
estimation from these 24 patients. The results are illustrated
and compared with the reference image in Fig. 2.

(a) (d)

(b) (e)

(c) (f)

Fig. 2. Comparison of STAPLE and Log-Euclidean Mean Results. Results
obtained from the whole simulated database (20 control images and 4 outliers)
(a): Reference noiseless image (zoom in image (d)) ; (b): Log-Euclidean mean
result (zoom in image (e)) ; (c):STAPLE ground truth (zoom in image (f)).

In this figure, we can see that the Log-Euclidean average
(images (b) and (e)) is affected both by the noise in the
database and by the presence of the 4 outliers. As a result,

the mean tensors are rotated clockwise and sometimes appear
swollen when compared to the reference tensors. The use of
our method, however, provides a much more accurate result,
with the tensors in images (c) and (f) being more similar to
the reference. These qualitative results were confirmed quan-
titatively by computing the average Log-Euclidean distance
between the computed averages and the reference image. The
distance was0.11 for the STAPLE average and0.221 for the
Log-Euclidean mean: the average error with our new method
is better by a factor of2.02.

We then evaluated the parameters obtained by our method
and used our framework to try to detect the outlier images
among the database. The parameters obtained for the two
groups of control images were very close to those used to
generate the images. For example, the mean of the bias
parameters obtained for the first group is0.1922 ± 0.0207,
which includes the reference value of0.2. For the second
group, the mean bias found is−0.2079±0.0214, which again
includes the reference value of−0.2.

Finally, to evaluate our Kullback-Leibler comparison frame-
work, we computed the Gaussian scores for each image of the
database with respect to the mean distribution of errors. We
report the results in Table I. This table shows the capabilities
of our framework to detect the outliers among a database. The
Gaussian scores for the control images are large, ranging from
0.591 to 0.777, while the scores of the outliers (images 21 to
24) are much smaller, below the limit of0.05 and ranging from
0.018 to 0.04, therefore identifying them as outliers. Moreover,
our framework identified both groups of outliers, even though
their noise parameters were different.

Subj. # Score Subj. # Score Subj. # Score
1 0.619 9 0.694 17 0.777
2 0.614 10 0.663 18 0.634
3 0.714 11 0.654 19 0.624
4 0.601 12 0.732 20 0.697
5 0.607 13 0.652 21 0.018
6 0.644 14 0.768 22 0.028
7 0.648 15 0.716 23 0.040
8 0.591 16 0.621 24 0.035

TABLE I
PARAMETER EVALUATION RESULTS ON THE SIMULATED DATABASE .

GAUSSIAN SCORES BETWEEN EACH IMAGE AND THE MEAN PARAMETERS

OF THE DATABASE USING THEKLD- BASED EVALUATION FRAMEWORK

(SEEEQ. (17)).

B. Evaluation of Tensor Differences in Multiple Sclerosis
Patients

We now present the evaluation of tensor differences in mul-
tiple sclerosis (MS) patients with respect to control subjects.
As mentioned previously, our method requires a reference
frame on which the images are registered. The DTI analysis
therefore require two steps:
• construction of a mean DTI atlas from the control subjects

that will be used as the reference frame for the study (see
Section III-B2),
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• registration of the MS patients onto the atlas and use
of our framework to analyze the regions of lesions (see
Section III-B3).

1) DTI Databases:We have used two databases of images
in our experiments. The first database was composed of 3D
T1 images (size256 × 256 × 175 with a resolution of1 ×
1× 1.3 mm3, illustrated on Fig. 3) and associated DTI of the
brain for 20 normal adult subjects (with an original size of
256× 256× 60 and resolution of1× 1× 2 mm3).

(a) (b)

(c) (d)

Fig. 3. Examples of Subjects from the Normal Database. Axial slices
showing four subjects T1 images of the normal subjects database registered
using a global affine transformation on an atlas.

The second dataset was composed of 8 patients (illustrated
on Fig. 4) exhibiting multiple sclerosis lesions in the brain.
Both DTI and T1 images were acquired with the same size
and resolution characteristics as for the first database. The
FLAIR images were also added in this database and were
used together with the T1 images to manually delineate the
lesions in each 3D patient image.

Some preprocessing was performed on both databases. First,
the skull of each brain was removed automatically for both
databases using the BET algorithm [24]. We are only interested
in the study of the brain and removing the skull allows for a
better registration of the structures close to it.

Then, the DTI of each patient was registered on the
corresponding T1 image. This was done in two steps: first
a global affine transformation was found between the T1
image and the mean diffusivity image of the DTI using [25].
Then, a second step optimized a B-Splines transformation
using FFD registration [26]. Finally, the tensors were moved
and reoriented according to the transformations. It is usually
assumed that the structure of the tensor should not change
with the transformation [27]. Therefore, only a local rotation
R should be applied to the tensorD: D′ = RDRT . For the
non linear transformation, this local rotation was computed

(a) (b)

(c) (d)

Fig. 4. Examples of the Multiple Sclerosis Database. Axial slices of four
patients T1 images, registered using a global affine transformation on an atlas.

using the polar decomposition of the Jacobian matrixJ = ∇T
[27]. The polar decomposition theorem states that any nonsin-
gular square matrix can be decomposed into a rigid rotation
componentR and a deformation componentU : J = UR.

2) Mean DTI Atlas Construction:As mentioned in Section
II-D, we needed to transfer all the DTI onto the same reference
frame in order to use continuousSTAPLE on these databases.
Using any subject as a reference would introduce a bias due
to the specific anatomy of the reference image. We therefore
chose to build an unbiased atlas from the dataset of controls,
and use it as the reference for our future evaluations. The
construction of the DTI atlas is divided into two main steps:

• construction of an average T1 image from the T1 images,
• application of the obtained transformations to the DTI.

We have chosen to compute the atlas using a block-matching
based non linear registration of the anatomical T1 images [28]
as it was readily available in our laboratory. However, the
proposed algorithm is independent of the choice of the reg-
istration algorithm. Therefore, recent tensor based registration
algorithms taking into account the tensors specific information
[29], [30], [31], [32] could also be used. This would result in
a simplification of the atlas construction, requiring only to
utilize the atlas construction framework proposed by [33] on
the DTI images.

The construction of the average T1 image was done using
an unbiased atlas construction method proposed by Guimond
et al. [33]. This algorithm basically iterates over the fol-
lowing steps: at each iterationi, all the imagesIk are non
linearly registered on a reference imageRi, therefore finding
transformationsTk, and bringing them onRi. Then, a mean
imageMi can be built from these registered images simply by
averaging the intensities of the images. At the same time, the
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non linear transformationsTk are averaged and inverted using
the Log-Euclidean framework for diffeomorphisms [8] to get
a transformationT

−1
, i.e.T

−1
= exp(− 1

N

∑
k log(Tk)). This

inverse average transformation is then applied toMi and
used as the new reference imageRi+1 for the next iteration:
Ri+1 = Mi ◦ T

−1
.

This iterative process is complete when the variation be-
tween successive mean images is sufficiently small, i.e. when
the difference between the mean transformationsT at two
successive iterations are small. At the end of the average T1
image construction, a mean imagẽM is obtained as well as
transformationsT̃k deforming each imageIk on M̃ . These
obtained transformations are then applied to the tensor images
(in the same way as shown in Section III-B1), therefore
obtaining a set of DTID̃T k in the same reference frame.

(a) (b)

Fig. 5. Mean Tensor Image associated to the Mean Atlas. Axial slices
showing (a) the average T1 image and (b) the mean tensors obtained using
our method superimposed on the atlas.

Our continuousSTAPLE was used on the log-tensors of the
registered DTI. Afterwards, an exponentiation step provides
the reference standard tensors. As an illustration of this
process, we show in Fig. 5 the average T1 image obtained
from the database of 20 subjects, as well as an axial slice of
the mean tensors obtained using continuousSTAPLE.

We also performed the KLD evaluation proposed in Section
II-D on the 20 sets of parameters obtained from continuous
STAPLE. The obtained Gaussian scores (see Eq. (17)), pre-
sented in Table II, showed that 19 of the 20 normal subjects
had similar results and were not significantly different from the
mean reference standard population, with their probabilities
ranging from 0.259 to 0.984. However, subject 16, image
(d) on Fig. 3, had a probability of2 × 10−4, pointing out
a significant difference in this subject compared to the rest of
the population. This difference is due to the specific anatomy
of the subject. This subject’s ventricles are indeed much larger
than any of the others in the database, resulting in registration
discrepancies and in significant differences in the transformed
tensors.

3) DTI Analysis of Multiple Sclerosis Patients:Once we
created this atlas, the second step of our DTI analysis was to
use it as a reference frame for the evaluation of the tensors
inside the lesions of MS patients. To this end, we have
followed, for each of the patients taken separately in the MS
database, the following process:
• non linear registration moving the patient T1 image onto

the atlas,

Subj. # Score Subj. # Score Subj. # Score
1 0.294 8 0.561 15 0.934
2 0.282 9 0.667 16 2× 10−4

3 0.867 10 0.807 17 0.652
4 0.633 11 0.907 18 0.259
5 0.657 12 0.903 19 0.953
6 0.792 13 0.984 20 0.640
7 0.858 14 0.970

TABLE II
PARAMETER EVALUATION RESULTS ON THE NORMAL SUBJECTS

DATABASE . GAUSSIAN SCORES BETWEEN EACH SUBJECT AND THE MEAN

PARAMETERS OF THE ATLAS USING THEKLD- BASED EVALUATION

FRAMEWORK (SEEEQ. (17)) SHOWING AN OUTLIER SUBJECT DUE TO

REGISTRATION DISCREPANCIES.

• application of the transformation to the patient tensors,
• use of continuousSTAPLE (over a predefined region of

interest) on the patient DTI pooled with the atlas DTIs,
• patient results computation using the KLD evaluation

framework.

The patient was registered in two steps on the atlas. First,
a global affine transformation was computed. Then, a non
linear registration was performed to align locally the anatomies
of the atlas and of the patient. As intensities in voxels with
lesions are different from those of the atlas, the registration
was performed in a slightly different way as it was done for
the atlas construction, following a method similar to [34].
No correspondences were computed inside a dilated mask
of the patient’s lesions and the transformation was therefore
interpolated from neighboring regions. This method allows to
take into account abnormalities in lesions signal so that they
did not generate registration artifacts in the evaluated data.

The computed non linear transformation was then applied
to the patient’s DTI. We used continuousSTAPLE over the set
of DTI from the normal subjects and added the transformed
DTI of the patient among the images. The algorithm was only
run on a subregion of the images, i.e. on the 3D masks of
the patient’s lesions. We therefore obtained parameters for all
of the subjects and the patient, and used them in our image
comparison framework to test for a significant difference
between the normal parameters and those of the patient.

We show the results of this evaluation, repeated for the 8
patients of the database, in Table III. The obtained probabilities
of the patient parameters belonging to the mean Gaussian in
our experiments were very small for all the patients, ranging
from 9.4 × 10−89 to 1.6 × 10−4. This shows, therefore, that
there exists a significant difference between the MS patients’
tensors and the normal subjects’ tensors in the lesions regions.

IV. CONCLUSION

We have presented a new method, called continuousSTA-
PLE, to compute a reference standard from a set of vector
or tensor images (i.e. where each voxel of the image can
be represented as anRN vector) and parameters describing
the bias and covariance of each image with respect to this
reference. This algorithm was associated to a framework
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Patient # Score Patient # Score
1 1.6× 10−4 5 2.3× 10−87

2 9.4× 10−89 6 1.1× 10−12

3 3.8× 10−9 7 1.4× 10−83

4 1.6× 10−38 8 3.1× 10−16

TABLE III
PARAMETER EVALUATION RESULTS ON THE MS PATIENTS DATABASE .

GAUSSIAN SCORES BETWEEN THEMS PATIENTS AND THE REFERENCE

STANDARD TENSORS ON THEMS LESION REGIONS. ALL VALUES SHOW A

STRONG DISAGREEMENT BETWEEN THEMS LESIONS TENSORS AND THE

CONTROL PATIENTS TENSORS.

for the comparison of these parameters, which was utilized
for the evaluation of local differences of tensors in DTI of
multiple sclerosis patients, showing significant differences in
the vicinity of lesions.

This DTI analysis will be performed in the future on other
regions of the patients, such as the normal appearing white
matter along the cortical spinal tract, to quantify the brain
structure differences due to the disease. This algorithm could
also be associated with the local comparison between the
controls and the patients of FA, MD, eigenvalues or other
characteristic values extracted from the DTI. This would allow
to combine this improved detection framework based on the
full tensor information to existing measurements to get an
improved characterization of the various effects of a disease
on the local white matter structure.

The comparison framework presented here is dependent on
non linear registration: various algorithms may be used to
create the atlas and register the patient on it. These algorithms
can be based on anatomical images or DTI. DTI registration
may even be used in conjunction with anatomical registration
to compute the reference atlas. Registration errors may appear
when the anatomy of a patient differs substantially from the
mean anatomy, or due to the high variability of brain sulci from
one subject to another. The evaluation of the robustness of the
obtained results with respect to various registration algorithms
would therefore be of interest to determine if significant
differences may arise due to those methods. Interestingly,
the framework presented here could also be used for the
comparison of different registration methods and therefore
to identify the good registration methods for a particular
application.

Many other applications exist for this algorithm. As it can
use general vector images as an input, it could be used on
non linear transformations, again using the Log-Euclidean
framework [8] to ensure a proper vector space. Another
potential application would be the study of the Jacobians of
transformations for the detection of abnormal anatomy. The
comparison of these results with other hypothesis tests such
as those proposed in Lepore et al. [5] would then be very
interesting.

To be able to perform those studies, this comparison frame-
work may be extended to perform group studies on a given
region of interest (for example using the Cramers’ test [3]
with the proposed Kullback-Leibler divergence as a distance
between theSTAPLE parameters). Moreover, the generalization

of this framework to the computation of voxelwise statistics,
for example using blocks around each voxel, would further
improve the power of this method allowing for the auto-
matic detection of the regions where statistically significant
differences exist. This would take into account the different
local variabilities and therefore reduce the number of false
negatives, particularly when the region of interest is large (e.g.
when the study is performed on the whole white matter). This
extended framework could then be an invaluable tool for the
comparison of populations, the characterization of pathologies
and of their evolution in response to treatment.
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