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Introduction 

•  Atlas 
•  An image of an anatomy 
•  Attached to various information 

- Segmentation (labels, shapes, …) 
- Statistics (diffusion tensors, fibers, …) 

•  Very powerful and generic tool 
•  Study of a population (e.g. : study of functional organization) 
•  In-depth comparison of populations 
•  Segmentation of structures 
•  In-depth characterization of disease in a patient 
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Atlas Based Segmentation 

•  Goal: Delineate structures on a patient/subject image 
 

•  Some applications 
•  Therapy planning 
•  Study of brain evolution (brain growth, atrophy due to disease, …) 

•  Composed of three major steps 
•  Atlas construction (if needed) 
•  Registration of the atlas onto the patient 
•  Propagate atlas segmentation onto the patient 
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Atlas Construction Strategies 

•  Single image approach 
•  One image manually segmented by an expert 

- Brain atlas [Bondiau et al., 2005] 
•  Has to be representative of the patient anatomy 
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[Bondiau et al., 2005]. Atlas-based Automatic Segmentation of MR Images: Validation Study on the Brainstem 
in Radiotherapy. Int J Rad Onc Biol Phys, 61(1):289-98, 2005. 



•  Average anatomy built from a database 

Average Atlas Construction Method 
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Average Image Construction 

•  New reference: Averaging of registered images intensities 
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Average Image Construction 

•  Unbiased atlas construction [Guimond et al., 2000] 
•  Iteration over two steps 

•  Registration of all images on reference 
•  “Unbiasing” the new reference  

•  Registration à non linear transformations to the reference 
•  Unbiasing step 

•  Compute an average transformation [Arsigny et al., 2006] 

•  Application of         to the new reference 

[Guimond et al., 2000]: Average Brain Models: A Convergence Study, CVIU, 2000. 
[Arsigny et al., 2006]: A Log-Euclidean framework for statistics on diffeomorphisms, MICCAI, 2006. 
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Atlas Based Segmentation Principle 
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Atlas Based Segmentation Principle 
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Challenges in Atlas-Based Segmentation 

•  Atlas-based segmentation 
•  Segmentation of many structures in one step 

•  Non linear registration 
•  Central technique for atlas-based segmentation 
•  Able to handle atlas/subject variability 
•  Robust registration method, smooth transformation 

•  Atlas Construction 
•  Need for a representative, unbiased atlas 
•  How to build atlas segmentations ? 
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Road Map 

•  Introduction 
•  Image Registration for Atlas Based Segmentation 

•  Challenges and Review 
•  One Adapted Technique: Locally Affine Registration 
•  Example Results 

•  Adapting the Atlas to the Patient 
•  Adapted Atlas Construction 
•  Results 

•  Conclusion 
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Registration Techniques Classification 

•  Registration pipeline 
•  Crucial to build the atlas (e.g. average atlas) 
•  Crucial to register the atlas on the patient 
•  Needs to be carefully chosen 

•  Registration algorithm: three main bricks [Brown, 1992] 
•  Similarity measure 

- SSD, correlation coefficient, mutual information, … 
•  Transformation 
•  Optimization algorithm 

- Gradient descent, block matching, … 
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[Brown, 1992]: L.G. Brown. A Survey of Image Registration Techniques. ACM Computing Surveys, 1992. 



Which transformation to register the atlas ? 

•  Needs to be adapted to the task 
•  Tradeoff in non linear registration 

•  Able to handle atlas / patient variability 
•  Robust and smooth 

•  Classes of transformations 
•  Parametric: interpolated between points or regions 

- Arbitrary number of degrees of freedom 
- FFD [Rueckert et al.], … 

•  Dense: one displacement vector per voxel 
- Maximal number of degrees of freedom 
- Diffeomorphic demons [Vercauteren et al.], … 
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[Rueckert et al.] Non-Rigid Registration Using Free-Form Deformations: Application to Breast MR Images. TMI, 
1999. 
[Vercauteren et al.] Diffeomorphic demons: Efficient non-parametric image registration. Neurimage, 2009. 
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Some Examples of Registration Algorithms 

•  Parametric Registration Algorithm 
•  Transformation  

-  defined on a grid of control points, interpolated in between 

•  Free-Form Deformations 
•  Regular grid of cubic B-Splines 
•  Gradient descent on the control points displacement 

•  Advantage: any number of degrees of freedom 
•  Disadvantage: how to choose this number? 

15 



Some Examples of Registration Algorithms 

•  Dense Registration Algorithm 
•  Transformation: one displacement vector per voxel 

•  Diffeomorphic Demons 
•  Similarity: optical flow (similar to SSD) 
•  Gauss Newton scheme to optimize the transform 

•  Advantages 
•  Log-Euclidean framework: guaranteed diffeomorphism 
•  Fast and symmetric transform 

•  Disadvantages 
•  many degrees of freedom, needs good regularization 
•  SSD may not be adapted for some tasks 
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Road Map 

•  Introduction 
•  Image Registration for Atlas Based Segmentation 

•  Challenges and Review 
•  One Adapted Technique: Locally Affine Registration 
•  Example Results 

•  Adapting the Atlas to the Patient 
•  Adapted Atlas Construction 
•  Results 

•  Conclusion 
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Locally Affine Registration for Atlas Registration 

•   Principle: 
•  Register only anatomic areas of interest 
•  Interpolate a global transformation from all local transformations 
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[Commowick et al., 2008]: An Efficient Locally Affine Framework for the Smooth Registration of Anatomical 
Structures. Medical Image Analysis,12(4):427-441, 2008. 



Locally Affine Transformation 

•   Local transformation 
•  Affine transformation      associated to each region 
•  Weight function 

- Relative influence of each region at point x 

 
 
•   Global transformation: 

•  Solution 1: Weighted interpolation of affine components 

•  Solution 2: Using an ordinary differential equation [Arsigny et al., 2009] 
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[Arsigny et al., 2009] A Fast and Log-Euclidean Polyaffine Framework for Locally Linear Registration. Journal of 
Mathematical Imaging and Vision, 33(2):222-238, 2009. 



LAF: Updating the transformation 

•   Local affine correction       estimation 

•   Block-Matching algorithm 
•   Outlier rejection in the estimation process  
•   Least Trimmed Squares Weighted Estimation 

•  Weighted by similarity measure values 
•  Weighted by  
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LAF: Fluid-like Regularization 

•   Fluid-like regularization of local transformation corrections 
•   Gradient descent on 

•   Log-Euclidean polyaffine framework 
•              belongs to a vector space 
•  Generalization of usual regularization energies 
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LAF: Elastic-like Regularization 

•   Gradient descent on 
 

•   Similar to fluid-like regularization 
•  Regularization on transformations  
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LAF: Transformation Interpolation 

•  Global transformation computation 
•  Solution 1 (weighted interpolation): Fast but not always invertible 
•  Solution 2 (polyaffine): Slower but always invertible 
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Road Map 

•  Introduction 
•  Image Registration for Atlas Based Segmentation 

•  Challenges and Review 
•  One Adapted Technique: Locally Affine Registration 
•  Example Results 

•  Adapting the Atlas to the Patient 
•  Adapted Atlas Construction 
•  Results 

•  Conclusion 
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Example: Radiotherapy Planning 

•   Radiotherapy principle: 
•  Use of high energy irradiation beams  
•  Optimize dose on the tumor 
•  Control irradiation of critical structures 

(OAR)  

è  Need for high precision planning 
•  Irradiation doses computed on each organ 
•  Compare doses with expected levels 
•  Requires delineation of structures 

•  Objective: fast and robust automatic 
segmentation 
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Evaluation in Clinical Conditions (Dense) 
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Evaluation in Clinical Conditions (LAF) 
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Semi-Quantitative Evaluation in Clinical Conditions 

•   Evaluation in clinical conditions [Isambert et al., 2008] 
•  Done at Institut Gustave Roussy 
•  In the frame of MAESTRO European project 

A. Isambert, F. Dhermain, F. Bidault, O. Commowick, P.-Y. Bondiau, G. Malandain and D. Lefkopoulos. 
Evaluation of an atlas-based automatic segmentation software for the delineation of brain organs at risk in a 
radiation therapy clinical context. Radiotherapy Oncology, 87(1):93-99, 2008. 
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Head and Neck Anatomy 
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[Grégoire et al., 2003] CT-based delineation of lymph node levels and related CTVs in the node-negative neck : 
DAHANCA, EORTC, GORTEC, NCIC, RTOG consensus guidelines. Radiotherapy Oncology, 2003. 



Evaluation protocol 

•  Image database 
•  105 patient CT-scan images (Pr. V. Grégoire, MAESTRO) 
•  Small tumors not deforming the surrounding anatomy (N0 grade) 
•  Various patient position and anatomy 

•  Evaluation of atlas construction and segmentation 
•  Leave-one-out approach 
•  M1: Dense registration 
•  M2: Locally affine registration 
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Image Database Examples 
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Obtained Atlases 

M1 Atlas 
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Obtained Atlases 

M2 Atlas 
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Qualitative Results 

Manual Segmentation 
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M1 Atlas Segmentation 

Qualitative Results 
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M2 Atlas Segmentation 

Qualitative Results 
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Summary 

•  Registration has to be adapted to the task 
•  Enough freedom to recover deformations 
•  Enough constrained to be smooth and robust 

•  Constrained parametric transformations 
•  Locally affine registration: particularly adapted to this task 

•  Robust: one parameter set for all tested acquisition protocols 
•  Ideal for articulated structures (head and neck) 

•  Registration is important 
•  But an adapted atlas may be even more 
•  Mis-registrations and over-segmentations may appear 
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Adapting Atlas to Specific Anatomies  

•  Challenge 
•  Anatomy may greatly vary between patients 
•  Very difficult to handle with a single atlas 

•  Objective: get robust atlas-based segmentation 
•  Other approaches to atlas construction 
•  Selection of images close to the patient 

- A posteriori selection 
- A priori selection 
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Adapting Atlas to Specific Anatomies  

•  First solution: utilizing multiple atlases 
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Adapting Atlas to Specific Anatomies  

•  First solution: utilizing multiple atlases 
•  Remove atlas construction step 
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[Artaechevarria et al., 2009]: Combination Strategies in multi-atlas image segmentation: Application to brain 
MR data. IEEE TMI, 2009. 



Multiple Atlas Segmentation 

•  Utilize several template images 
•  Each one associated to manual segmentations 
•  Register each one on the patient to delineate 
•  Combine segmentations on the patient 

•  Segmentation combination becomes the key 
•  Getting rid of mis-registered images 
•  Equal weighting of each image: majority voting (MV) 
•  A posteriori selection of the images to be used for segmentation 

- SIMPLE, STAPLE, weighted MV, … 
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[Warfield et al., 2004] Simultaneous Truth and Performance Level Estimation (STAPLE): an Algorithm for the 
Validation of Image Segmentation, IEEE TMI, 2004 
[Rohlfing et al., 2004] Performance-based classifier combination in atlas-based image segmentation using EM 
parameter estimation, IEEE TMI, 2004. 
[Langerak et al., 2010] Label-fusion in atlas-based segmentation using SIMPLE. IEEE TMI, 2010. 



Multi Atlas Segmentation: Summary 

•  Advantages 
•  Potential for better registrations 
•  Ability to reject mis-registered images 
•  Improved robustness for large anatomy differences 

•  Disadvantages 
•  A posteriori selection of useful images 

- Problem if many errors in individual registrations 
•  Computationally expensive (N registrations instead of 1) 

- Difficult to use in clinical context 

43 



Most Similar Atlases Based Segmentation 

•  Assumption 
•  Registration accuracy depends on atlas - patient “similarity” 

 

•  Objective 
•  Select a priori only a subpart of the database 
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Patient Average atlas Similar image 

O. Commowick, G. Malandain. Efficient Selection of the Most Similar Image in a Database for Critical 
Structures Segmentation. MICCAI, 2007. 



Most Similar Atlases 

•  Key interrogation 
•  How to define “similarity” between images? 
•  Central to keep meaningful images 

•  Two main approaches 
•  Similarity from intensities: after registration, similar images have 

similar intensities  
- Similarity measure (eg SSD) as selection criterion 

•  Similarity from transformations: the transformation between similar 
images is very close to identity 
- E.g. : Log-Euclidean distance between transforms 

•  Choosing the right selection measure is an open problem 
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Most Similar Multi Atlas Segmentation 

•  Method from Aljabar et al 
•  Register all atlases on a reference 
•  Select the K most similar images at a global scale 

- Selection based on intensity between patient and template image 
•  Combine the K most similar segmentations 

•  Advantage 
•  Improved results compared to multi-atlas segmentation 

•  Disadvantage 
•  Selection at a global scale 
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O. Commowick et al.. Efficient Selection of the Most Similar Image in a Database for Critical Structures 
Segmentation. MICCAI, 2007. 
P. Aljabar et al. Multi-atlas based segmentation of brain images: Atlas selection and its effect on accuracy. 
Neuroimage, 46(3), 2009. 



Locally Most Similar Atlas: Frankenstein 

•  Another approach: the “Frankenstein’s creature” 
•  Select K images for several predefined regions of interest 
•  Combine them into a patient-specific atlas 
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L. Ramus, O. Commowick, G. Malandain. Construction of Patient Specific Atlases from Locally Most Similar 
Anatomical Pieces. In MICCAI, Beijing China, 2010.  



Efficient Selection of the Most Similar Images 

•  Atlas as an intermediate image 
•  Regions of interest defined on the average atlas 
•  Correspondences database images – atlas precomputed 
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Efficient Selection of the Most Similar Images 

•  Selection based on deformations 
•  Between database image and average atlas : 
•  Between patient and average atlas : 

•  For each region, rank images according to  
•  Compare average dilation/contraction in the region of interest 
•  Utilizes average Jacobians of the deformations 

•  Result : For each     , a set of K most similar images  
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Combining Selected Images into a Template 

•  Extended Guimond’s atlas construction 
•  Spatially varying weights for images 
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•  First step: Average of images weighted by 
•  Region of selection : distance to the region 
•  Selection metric :  

•  Second step: Modified unbiasing step 
•  Compute an average transformation (polydiffeomorphism) 

•  Apply         to the new reference 

Combining Selected Images into a Template 
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•  Adaptation to neck flexion 

Atlas Comparison 
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Segmentation Results 
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Quantitative Results 
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Specificity Sensitivity 

•  Leave-One-Out study on 105 CT images 



Summary 

•  Two main approaches to build patient adapted atlases 
•  A posteriori selection of useful templates 

- Multi-atlas segmentation 
•  A priori selection of most similar images 

- Frankenstein, most similar multi atlas segmentation 

•  Similarity for selection 
•  Open problem 
•  Intensity, transformation, segmentations 

•  Able to handle anatomy variability 
•  Often at the cost of multiple registrations 
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Conclusion 

•  Atlas based segmentation 
•  Fast and robust technique for segmentation 

•  Several key points 
•  Registration: robust and precise (local affine nice for head and neck) 
•  Atlas selection strategy (eg multi atlas, Frankenstein) 

- Keep only images that are close to the patient 
-  Local a priori selection  
- A posteriori robust combination of segmentations 

•  Results 
•  Average atlas: good positioning, over-segmentation 
•  Adapted atlas: more precise segmentation 
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Perspectives 

•  Registration is always perfectible 
•  Much research on automatic detection of local affine regions 
•  New dense methods may be better adapted to brain cortical 

structures 

•  How to define image closeness? 
•  No measure is perfect, many choices 
•  Utilizing several measures together 

- Segmentation + intensity? 
-  Intensity + Deformation? 

•  Towards more efficient methods: large databases 
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LAF: Updating the transformation 

•   Local affine correction       estimation 
•   Block-Matching algorithm [Ourselin et al.] 

•  Move blocks in a neighborhood 
•  Pairing: chosen according to a similarity value  

•  Least Trimmed Squares Weighted Estimation 
•  Weighted by similarity measure values 
•  Weighted by  
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[Ourselin et al., 2000]: A General Framework to Improve Robustness of Rigid Registration of Medical Images. 
MICCAI, 2000. 



“Block Matching” Technique 

•  1. Consider regularly sampled sub-images (or “blocks”) 
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“Block Matching” Technique 

•  2. Search the “most similar” block: gives point to point 
correspondence 
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“Block Matching” Technique 
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•  3. Obtain pairings between regions 



LAF: Fluid-like Regularization 

•   Fluid-like regularization of local transformation corrections 
•   Gradient descent on 

•   Log-Euclidean polyaffine framework 
•              belongs to a vector space 
•  Generalization of usual regularization energies 
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LAF: Composition of Corrections 

•   Regularized corrections:  

•   Composition of corrections with the current transformation 
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LAF: Elastic-like Regularization 

•   Gradient descent on 
 

•   Similar to fluid-like regularization 
•  Regularization on transformations  

67 

Updating the 
Transformation 

Fluid-like 
regularization Composition Elastic-like 

Regularization 

Reg(Al
i, wi) =

N�

i=1

�

j �=i

pi,j� log(Al
i)− log(Al

j)�2

Al
i



Measures for Segmentation Validation 

•  Overlap measures based on a sum over voxels 
•  Sensitivity 
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•     Specificity Sens =
TP

TP + FN
Spec =
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TN + FP


