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Abstract. The evaluation of the quality of segmentations of an image,
and the assessment of intra- and inter-expert variability in segmentation
performance, has long been recognized as a di�cult task. Recently an
Expectation Maximization (EM) algorithm for Simultaneous Truth and
Performance Level Estimation (Staple), was developed to compute both
an estimate of the reference standard segmentation and performance
parameters from a set of segmentations of an image. The performance is
characterized by the rate of detection of each segmentation label by each
expert in comparison to the estimated reference standard.
This previous work provides estimates of performance parameters, but
does not provide any information regarding their uncertainty. An esti-
mate of this inferential uncertainty, if available, would allow estimation
of con�dence intervals for the values of the parameters, aid in the in-
terpretation of the performance of segmentation generators, and help
determine if su�cient data size and number of segmentations have been
obtained to accurately characterize the performance parameters.
We present a new algorithm to estimate the inferential uncertainty of
the performance parameters for binary segmentations. It is derived for
the special case of the Staple algorithm based on established theory for
general purpose covariance matrix estimation for EM algorithms. The
bounds on performance estimates are estimated by the computation of
the observed Information Matrix. We use this algorithm to study the
bounds on performance estimates from simulated images with speci�ed
performance parameters, and from interactive segmentations of neonatal
brain MRIs. We demonstrate that con�dence intervals for expert segmen-
tation performance parameters can be estimated with our algorithm. We
investigate the in�uence of the number of experts and of the image size
on these bounds, showing that it is possible to determine the number of
image segmentations and the size of images necessary to achieve a chosen
level of accuracy in segmentation performance assessment.

1 Introduction

The evaluation of image segmentation has long been recognized as a di�cult
problem. Many methods have been proposed in the literature to deal with it.
These can be classi�ed into two groups. First, the evaluation can be based on
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distances between surfaces extracted from the automatic and the manual seg-
mentation. For example, these can be the Hausdor� distance [1] or a mean dis-
tance between the two surfaces [2]. The other class of measures are voxel-based
measures, i.e. overlap measures based on voxel-wise computations. Among those,
the Dice similarity coe�cient [3] or the Jaccard similarity coe�cient [4, 5] have
been widely used to measure the overlap between two segmentations.

These two classes of measures have their advantages and drawbacks, and
both may be used to provide insight into the quality of a segmentation [6] and
to compare segmentations. The evaluation of di�erent experts or algorithms for
a particular task can be done quantitatively, with performance characterized by
rates of detection of labels, when a reference standard segmentation is available.

Segmentation performance characterization can also be achieved when no
external reference standard segmentation is available by estimating the refer-
ence standard. One algorithm for this, called Staple [7], uses an Expectation-
Maximization (EM) algorithm to estimate iteratively, from a set of N expert
segmentations, the hidden reference standard segmentation and performance
parameters for each segmentation. These parameters characterize the agreement
of a given expert with the underlying reference standard.

The Staple algorithm generates only point estimates of the performance pa-
rameters, and provides no information about the uncertainty in the values of the
parameters. Precise knowledge of the inferential uncertainty would enhance our
ability to interpret the performance of segmentation generators, and could be
used to determine if su�cient data size and number of segmentations have been
obtained to accurately characterize the performance parameters. An estimate of
this inferential uncertainty, if available, would describe con�dence intervals for
the values of the parameters. Such a con�dence interval describes the certainty
with which we know the value of the parameter. A di�erent concept is the con-
�dence interval for rater performance, which describes the range of performance
we expect to see across repeated segmentations by the same rater. If the inferen-
tial uncertainty of the values of performance parameter estimates are very small,
then a con�dence interval for rater performance can be estimated simply by the
sample variance over repeated segmentations.

We describe here an algorithm to estimate the inferential uncertainty of the
performance parameters. We demonstrate this can be achieved by estimating the
covariance matrix of the performance parameters from Staple by calculation of
the observed Information Matrix. The computation of the observed Information
Matrix has been described in the general EM framework [8]. In this paper we
derive analytic closed form expressions necessary to compute the covariance of
the performance parameters obtained from Staple in the case of binary seg-
mentations. We then demonstrate factors that in�uence the uncertainty in the
estimated performance parameters with simulated segmentations of images, and
apply our algorithm to characterize the segmentation of unmyelinated white
matter from MRI of brains of newborn infants.
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2 Method
2.1 The Staple Algorithm
We �rst recall brie�y the principle of the Staple algorithm [7]. This method uses
as an input a set of segmentations from J experts (either manual delineations
or automatic segmentations). These segmentations are available as decisions dij ,
indicating the label given by each expert j for each voxel i. The goal of Staple is
to estimate both the reference segmentation T underlying the expert segmenta-
tions, and parameters θ = {θ1, . . . , θj , . . . , θJ} describing the agreement between
the experts and the hidden reference standard. In the general case, each of the
parameters θj is an L × L matrix, where L is the number of labels in the seg-
mentation, and θjs′s is the probability that the expert j gave the label s′ to a
voxel i instead of the label s, i.e. θjs′s = P (dij = s′|Ti = s).

If the reference standard was known, then estimating the performance pa-
rameters for each expert would be straightforward. However, as it is unknown,
an EM approach [9, 8] is used to estimate the reference standard T and the
performance parameters of the experts. The EM algorithm proceeds iteratively,
alternating two steps:

� E-Step: Compute the expected value of the complete data log-likelihood
Q(θ|θ(k)) knowing the expert parameters at the preceding iteration: θ(k).
Evaluating this expression requires the knowledge of the posterior probability
of the true score T : P (T |D, θ(k)), which is su�cient in this case to perform
the Maximization step.

� M-Step: Estimate the performance parameters at iteration k + 1, θ(k+1) by
maximizing the expected complete data log-likelihood Q(θ|θ(k)), knowing
the current estimate of the reference standard.

2.2 Covariance and Information Matrix
We are interested in the computation of the covariance matrix C(θ) of the expert
parameters obtained by the Staple algorithm. This is done via the computa-
tion of the observed Information Matrix I(θ) of the parameters obtained after
convergence of the EM algorithm. Then, the covariance matrix is obtained using
the well-known result [10]: C(θ) = I−1(θ).

If all the data was known, the Information Matrix would be simply the matrix
of the second derivatives of the log-likelihood function. However, in the case of
an EM algorithm such as Staple, the hidden variables are unknown and their
value may only be estimated. As some variables are hidden, only the observed
Information Matrix I(θ) can be computed. The expression of I(θ) has been
derived for a general EM algorithm in [8] (page 100).

We proceed by �rst computing the expected complete data Information Ma-
trix Ic(θ) using the expected complete data log-likelihood Q(θ|θ(k)) estimated in
the EM algorithm. Then, to account for the uncertainty from the missing data,
the expected missing data Information Matrix Im(θ) is subtracted from Ic(θ) to
obtain the observed Information Matrix, i.e. I(θ) = Ic(θ)− Im(θ).
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2.3 Computation of the Observed Information Matrix
We derive here the expression of the observed Information Matrix for the Sta-
ple algorithm in the binary case. In this case, each expert has delineated one
structure by attributing the value 1 to a voxel belonging to the structure and 0
otherwise (background). In this particular case, the θ parameters can be repre-
sented entirely by two parameters for each expert j: pj = P (dij = 1|Ti = 1) and
qj = P (dij = 0|Ti = 0). pj is also known as the sensitivity of the expert j while
qj is also known as the speci�city. To simplify as much as possible the notation
for the following equations, we use the general notation θjs′s for the performance
parameters, keeping in mind that only pj = θj11 and qj = θj00 are the mean-
ingful parameters (θj01 and θj10 being completely determined as θj01 = 1 − pj

and θj10 = 1 − qj). Then, the EM algorithm is used to compute iteratively the
expected value of the complete data log-likelihood function Q(θ|θ(k)):

Q(θ|θ(k)) =
∑

j

∑

i

(
W

(k)
i log(θj,dij ,1) + (1−W

(k)
i ) log(θj,dij ,0)

)
(1)

where θj,dij ,s corresponds to either θj0s or θj1s depending on the decision dij .
W

(k)
i corresponds to the probabilistic estimate at the voxel i and the iteration k

of the reference standard segmentation. Using this function, we now derive the
observed Information Matrix of the parameters θ.

Derivation of the Expected Complete Data Information Matrix This
matrix, denoted Ic(θ), is expressed as the second derivatives of the expected
value of the complete data log-likelihood function [8], i.e.

Ic(θ) = − ∂2

∂θ∂θT
Q(θ|θ(k)) (2)

Eq. (1) and Eq. (2) demonstrate that the non-diagonal terms of Ic are zero as
the parameters are independent of each other. Therefore, Ic is a diagonal matrix
composed of the following terms:

Ic;pj =
∑

i

W
(k)
i

θ2
j,dij ,1

(3)

Ic;qj =
∑

i

1−W
(k)
i

θ2
j,dij ,0

(4)

Derivation of the Expected Missing Data Information Matrix Once Ic

has been computed, the observed Information Matrix is obtained by subtracting
from it the expected missing data Information Matrix Im. This matrix is gen-
erally more di�cult to compute than Ic(θ). When no analytical expression can
be derived, it can be estimated using the EM algorithm itself to compute the
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Jacobian matrix via numerical di�erentiation (see [10, 8]). In the general case of
any EM algorithm, an analytic expression of Im may also be obtained by the
following equation [11] if the required derivatives exist:

Im(θ) =
∂2Q(θ|θ(k))
∂θ(k)∂θT

(5)

In the case of the Staple algorithm, the expected value of the complete data
log-likelihood function Q(θ|θ(k)) can be di�erentiated. We have therefore derived
the analytic expression of Im elements as follows:

∂2Q

∂θjtt∂θ
(k)
n

=
∑

i

(−1)1+dij

θj,dij ,t

∂W
(k)
i

∂θ
(k)
n

(6)

where t is either 1 or 0, to derive the expressions for pj and qj . Interestingly, it can
also be shown that the obtained Im matrix is symmetric, therefore minimizing
the number of computations required. This expression gives Im as a function of
the derivatives of the probabilistic ground truth W

(k)
i . These W

(k)
i have been

derived by War�eld et al. [7] as:

W
(k)
i =

f(Ti = 1)
∏

j θ
(k)
j,dij ,1

∑1
m=0

(
f(Ti = m)

∏
j θ

(k)
j,dij ,m

) (7)

For simplicity of notations, we will consider that the prior probability f(Ti =
1), respectively f(Ti = 0), is constant over the entire image and will abbreviate
it by π1, respectively π0. However, all the derived expressions are still valid for
spatially varying prior probabilities by replacing πm in the following equations
by πm(i). Knowing the expression of Wi, its derivative with respect to the expert
parameters p

(k)
n = θ

(k)
n11 and q

(k)
n = θ

(k)
n00 can be derived:

∂W
(k)
i

∂θ
(k)
ntt

= (−1)1+dinπ0π1

(∏
l 6=n θ

(k)
l,dil,t

)(∏
l θ

(k)
l,dil,1−t

)

(∑1
m=0 πm

∏
l θ

(k)
l,dil,m

)2 (8)

where t is either 0 or 1. Therefore, Im(θ), de�ned in Eq. (5), is computed by
replacing ∂W

(k)
i

∂θ
(k)
n

by its value in Eq. (6). In practice, these values are computed
easily by evaluating the di�erent expressions at each voxel.

3 Results

To illustrate our formulation for deriving bounds on the value of the estimated
segmentation parameters, we will present two applications. First, we show re-
sults with a simulated database, with speci�ed parameters. Then, we present
the application of our framework to provide insight into the con�dence of the
estimated parameters on a manually segmented neonate database.
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3.1 Simulated Experiments

(a) (b) (c)

Fig. 1. Simulated Image Database. Simulated images used for the validation of our
bounds estimation method : (a): known reference standard, (b): example of simulated
segmentation of group 1 (sensitivity: 0.7, speci�city: 0.8), (c): example of simulated
segmentation of group 2 (sensitivity: 0.9, speci�city: 0.9).

To evaluate our framework with respect to a known ground truth, we created
a database of ten segmentations (image size 256 × 256), illustrated in Fig. 1,
divided into two groups. From the ground truth in Fig. 1(a), we have therefore
simulated a �rst group of 5 images with a sensitivity parameter of 0.7 and a
speci�city parameter of 0.8 (illustrated in image (b)). Then, a second group,
illustrated in image (c), was generated with di�erent parameters : sensitivity
and speci�city of 0.9. In order to test for the in�uence of the image size on the
con�dence in the parameters, we have also generated a second database with the
same parameters but with image size of 128× 128.

256× 256 Data 128× 128 Data
Segmentation # Sens. (± StDev) Spec. (± StDev) Sens. (± StDev) Spec. (± StDev)

1 0.7036 ± 0.0025 0.8011 ± 0.0022 0.6980 ± 0.0051 0.7988 ± 0.0045
2 0.7005 ± 0.0025 0.7964 ± 0.0022 0.6998 ± 0.0051 0.7960 ± 0.0045
3 0.7012 ± 0.0025 0.7909 ± 0.0023 0.6995 ± 0.0051 0.7980 ± 0.0045
4 0.6968 ± 0.0026 0.8003 ± 0.0022 0.6975 ± 0.0051 0.8007 ± 0.0044
5 0.7029 ± 0.0025 0.8010 ± 0.0022 0.6989 ± 0.0051 0.7964 ± 0.0045
6 0.9017 ± 0.0017 0.8973 ± 0.0017 0.8976 ± 0.0034 0.8998 ± 0.0034
7 0.9002 ± 0.0017 0.8995 ± 0.0017 0.8992 ± 0.0034 0.9012 ± 0.0034
8 0.8998 ± 0.0017 0.8986 ± 0.0017 0.9038 ± 0.0033 0.9027 ± 0.0033
9 0.8982 ± 0.0017 0.9018 ± 0.0017 0.8943 ± 0.0035 0.8960 ± 0.0034
10 0.8997 ± 0.0017 0.9007 ± 0.0017 0.8976 ± 0.0034 0.9036 ± 0.0033

Table 1. Simulated Evaluation of the Expert Parameters and their Bounds.
Simulated experiments results showing the estimated parameters for each segmentation
and its variability (one standard deviation). Results are shown for 256 × 256 images
and 128× 128 images, showing increased variability with decreasing image size.
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We have then run Staple on those databases to estimate a reference stan-
dard and utilized our framework to estimate bounds on the estimated parameter
values. The results are presented in Table 1 for the two databases. Our �rst ob-
servation on all our examples, including the following experiments on neonate
data, was that the non diagonal terms of the covariance matrix were always
much smaller than the diagonal terms. We have therefore chosen to present in
this article the standard deviations obtained for each parameter, therefore ne-
glecting the non-diagonal terms of the covariance matrix. The �gures in Table 1
show that almost all the estimated parameters are correct, up to one standard
deviation as estimated in our formulation. Deriving the bounds on these param-
eters therefore allows us to show that the estimation performed by Staple is
accurate. The second observation that can be made on these �gures is on the
in�uence of the image size on the variability of the parameters. Our experiments
indeed show a clear correlation between the image size and the variability, the
standard deviations increasing when the image is subsampled.

3.2 Evaluation of Variability Parameters on a Neonate Database

(a) (b) (c)

(d) (e) (f)

Fig. 2. Illustration of one image from the database. Coronal slice of (a) new-
born T1 MRI and (b-f) its repeated manual segmentation in 5 classes done by one
expert (cortical gray matter - grey, sub-cortical gray matter - white, unmyelinated
white matter - red, myelinated white matter - orange - and CSF - blue).

Image Database We have then applied our algorithm to �ve datasets of
neonate MRI segmentation (one of them illustrated in Fig. 2) selected from
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MRI scans from previous studies. Each of these datasets consisted of a T1 and a
T2 weighted image. After registration of the T2 image to the T1 image, �ve tis-
sue classes were delineated interactively: cortical gray matter, sub-cortical gray
matter, unmyelinated white matter, myelinated white matter and cerebrospinal
�uid (CSF). This process was repeated �ve times by three experts so that for
each dataset, 15 segmentations of �ve structures were �nally available.

Sensitivity (a)

Speci�city (b)

Fig. 3. Variability of the sensitivity and speci�city parameters. Expert param-
eters and their variability ((a): Sensitivity, (b): Speci�city) for the unmyelinated white
matter segmentation. These results on �ve segmentations (each column of each graph)
show that the standard deviations of the sensitivity and speci�city parameters are low
(going up to 1.3 % of the parameters values).

Evaluation of the Bounds on the Estimated Parameters We have used
Staple for each patient on the �ve segmentations of one expert to determine
the reference segmentation of the unmyelinated white matter for this expert,
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together with parameters of sensitivity and speci�city for each manual segmen-
tation. We have then used our analytical formulation to e�ciently compute the
observed Information Matrix for these parameters, and evaluated the covariance
matrix of the parameters by simply inverting the Information Matrix.

The parameters variabilities were computed on all patients and all structures
but, for clarity, we only present in Fig. 3 the results on the unmyelinated white
matter, showing for each parameter its standard deviation as an error bar. This
�gure shows that even with only �ve segmentations to estimate the ground
truth, the estimation of the expert parameters is very precise. The maximum
relative standard deviation is indeed of 1.3 %. This however seems logical as the
parameters are computed from all the voxels of the considered image.

Sensitivity (a)

Speci�city (b)

Fig. 4. In�uence of the image dimension on parameter variability. Standard
deviation of the estimated values (bars: parameter values, error bars: standard devi-
ations) of the sensitivity (a) and speci�city (b) parameters for the image at original
size (blue), subsampled once (red), and subsampled twice (green). An increase in the
standard deviation values is shown as the image is subsampled.
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In�uence of the Image Size on Parameter Variability We also wanted to
con�rm in a real case previous simulated results on the in�uence of image size
on the estimated variability of the parameters. We therefore subsampled the
segmentations of one patient (again using the �ve segmentations of one expert)
and evaluated the quality parameters as well as their variability.

We present in Fig. 4 the results of sensitivity, speci�city and standard devia-
tions (as error bars) on a patient in its original resolution, subsampled once and
twice. First, we can see on some experts that the variability of their parameters
becomes 0 when the images are subsampled twice. This is due to the fact that
the image becomes so small that the whole region of interest for a given expert is
only composed of the delineated structure, thereby removing the variability for
the corresponding expert parameter. Apart from this e�ect, these results con�rm
a clear in�uence of the image size on the parameters bounds (error bars repre-
sent one standard deviation in Fig. 4). The standard deviations again increase
when the image is subsampled. This seems quite logical as the less information
is known about each expert, the more variable the parameters are.

In�uence of the Number of Segmentations on Parameter Variability
Finally, another potential cause of parameter variability is the number of seg-
mentations used as an input to compute the reference segmentation. We have
studied this property using binary segmentation performance estimates on ten
manual segmentations of one subject. We present the evaluation of the results
using from 4 segmentations up to 10 segmentations (using less experts would
indeed not be meaningful for the statistical estimation of the hidden segmen-
tation). For each number K of manual segmentations, we have performed the
study over all the combinations of K images among the ten available.

Fig. 5. In�uence of the number of experts on parameter variability. Mean
sensitivities (in blue) and speci�cities (in red) and their respective relative variability
as a function of the number of experts in the study. The red bars indicate the standard
deviation of the mean values over the possible combinations of K experts among the
10 available.
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We present in Fig. 5 the average parameters (blue: sensitivity, red: speci�city)
computed over the combinations of K images. We also show (error bars on the
�gure) the average standard deviations for each number of experts. These results
show no signi�cant change of the variability of the parameters. This suggests
that, using 4 or more experts, the size of the structure to be delineated as well
as the size of the region of interest for the Staple computation is more in�uential
upon the variability of the estimated parameters than the number of experts.

4 Conclusion

We have presented in this article the expression of con�dence bounds on the
values of the expert performance parameters computed by the Staple algo-
rithm for the binary case. These formulations are based on the derivation of
analytic expressions for the observed Information Matrix of the underlying EM
algorithm. Such con�dence bounds will be very important as they will aid in
the interpretation of the performance of segmentation generators, and deter-
mine if su�cient data size and number of segmentations have been obtained to
accurately characterize the performance parameters.

We have presented examples of the application of these expressions for the
evaluation of con�dence intervals on the estimated values of the expert parame-
ters �rst in simulated experiments, showing the ability of Staple to obtain ac-
curate estimates of known performance parameters. We have also utilized these
expressions in the context of neonate brain segmentation, showing a dependence
of the bounds with respect to the number of voxels in the region of interest for the
segmentation. However, in our particular example, no correlation was detected
between the number of experts and the variability of their quality parameters
when using 4 or more experts in Staple.

This work may be further improved in the future by extending the expression
of the observed Information Matrix to the multi-category case, i.e. when several
structures have been segmented by each expert. This will require to take into
account the interdependency between the estimated performance parameters,
for example by considering only L − 1 label independent parameters, the last
one being computed from the others.

These expressions may then have many applications in terms of validation of
segmentation or evaluation of intra-expert segmentation variability in a clinical
context. In addition to the help to the clinician team in the assessment of the
parameters determined by the Staple validation algorithm, this work could
also be used in the future for the development of a local implementation of
the Staple algorithm. This would allow to determine the minimal size of the
region of interest required to obtain meaningful results for a given structure.
Future work will then examine using this approach to evaluate spatially varying
performance parameters and their bounds.
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