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ABSTRACT

We propose and evaluate a new block-matching strategy
for rigid-body registration of multimodal or multisequence
medical images. The classical algorithm first matches points
of both images by maximizing the iconic similarity of blocks
of voxels around them, then estimates the rigid-body trans-
formation best superposing these matched pairs of points,
and iterates these two steps until convergence. In this for-
mulation, only discrete translations are investigated in the
block-matching step, which is likely to cause several prob-
lems, most notably a difficulty to tackle large rotations and
to recover subvoxel transformations. We propose a solution
to these two problems by replacing the original, computa-
tionally expensive, exhaustive search over translations by a
more efficient optimization over rigid-body transformations.
The optimal global transformation is then computed based on
these local blockwise rigid-body transformations, and these
two steps are iterated until convergence. We evaluate the ac-
curacy, robustness, capture range and run time of this new
block-matching algorithm on both synthetic and real MRI
and PET data, demonstrating faster and better registration
than the translation-based block-matching algorithm.

Index Terms— MRI, multimodal rigid-body registra-
tion, optimization, block-matching.

1. INTRODUCTION

Pairwise multimodal/multisequence rigid-body registration is
ubiquitous in medical image analysis [1, 2]. The problem
arises when it comes to compare images of the same patient
obtained using different modalities (typically, MRI vs CT or
PET), or using MRI only but with different pulse sequences
(typically, T1- vs T2-weighted). Hereafter, for the sake of
clarity, we use the same term “multimodal” to refer to either
different modalities or different MRI sequences. Due to the
different contrasts of the images to register in this context,
the first successful methods used features extracted from each
of the two images (e.g. points, curves, surfaces) and then
matched to register these images [3]. Since the introduction
of the first multimodal similarity measures in the mid-90s
(mutual information) [4, 5], intensity-based (iconic) registra-
tion methods have somewhat superseded feature-based tech-
niques, mostly due to their higher genericness: on one part,
it can prove difficult to obtain homologous features between
some image modalities (e.g. MRI vs PET), while on the other
part the same similarity measure can potentially be used for
any type of multimodal registration.

An important class of intensity-based methods uses simi-
larity measures within a block-matching setting. This strat-
egy was first proposed in the context of motion estimation for
video compression [6] and has been subsequently applied to
medical image processing [7]. Within this setting, point-to-
point correspondences between the two images are first found,
based on the intensity similarity of blocks of voxels centered
on these points, before the global rigid-body transformation
best superposing these matched points is computed. This
two-step process (local block-matching and global transfor-
mation estimation) is then iterated until convergence. Here-
after, for the sake of conciseness and clarity, we name “block-
matching algorithm” this whole iterative process, although
this name only refers to its first step, strictly speaking.

Such block-matching algorithms are very powerful, as
they benefit from the good properties of both intensity-
based (genericness, multimodality, ability to use all the data
points for accuracy) and feature-based (ability to deal with
outlying matches for robustness using e.g. the RANSAC
procedure, the Hough transform, robust estimators, etc.)
methods. In addition, the task of matching blocks naturally
lends itself to parallel implementation [8].

However, in this classical setting, point matching is based
on the comparison of blocks whose relative positions in the
two images are identical up to a 3D translation defined
on the discrete underlying image grid. These methods are
thus likely to fail when dealing with large rotations, and to
be unable to capture subvoxel displacements. In this paper,
we propose to tackle these two problems by replacing the lo-
cal, exhaustive search of optimal translations by a local, nu-
merical search of optimal rigid-body transformations. Note
that within this setting, by nature, the blocks in one of the
two images are no longer defined on a discrete grid. The
global optimal rigid-body transformation is then defined us-
ing least trimmed squares (LTS) regression from the locally
estimated rigid-body transformations. We describe this new
block-matching registration algorithm in Section 2. We then
evaluate its accuracy, robustness, capture range and run time
on real and synthetic data in Section 3, demonstrating its
superiority over the classical block-matching algorithm. We
conclude and give some perspectives in Section 4.

2. METHODS

2.1. The classical block-matching algorithm

The basic idea underlying the classical block-matching rigid-
body registration algorithm is to iterate between the following



two steps, after the floating image has been resampled to
share the same image grid as the reference image:

1. Matching homologous points in the two images by max-
imizing a similarity measure between intensities of sub-
images (hereafter termed blocks) around these points;
the blocks to be compared are related via a discrete
translation on the image grid, and located in a given
neighborhood (hereafter termed search window).

2. Computation of the global transformation best super-
posing the points in the floating image with their coun-
terparts in the reference image, and application of this
transformation to the floating image.

The algorithm stops when two subsequently estimated
global transformations are sufficiently close to each other.
This algorithm as such is very generic and modular, and
further choices must be made for each of these modules:

Similarity measure. The similarity measure can be de-
signed to cope with monomodal (e.g. sum of squared dif-
ferences, correlation coefficient) or multimodal (e.g. mutual
information, correlation ratio) problems [9].

Blocks. The block-matching step relies on a set of four
(vector) parameters, given the 3 directions x, y, z: the size
of the blocks in both images (N = (Nx, Ny, Nz)), the grid
step size for the blocks in the reference (∆ = (∆x,∆y,∆z))
and the floating (Σ = (Σx,Σy,Σz)) image, and the size of
the search window in the reference image (Ω = (Ωx,Ωy,Ωz)).
It is common to choose these four parameters within a l-level
multiresolution scheme. The blocks must be large enough for
the similarity measure to be meaningful.

Optimization algorithm to match the blocks. A full
(exhaustive) search is the common approach for this purpose.
Other strategies have been extensively investigated for video
compression [10], but have not been widely applied in medical
image processing.

Optimization algorithm to compute the global trans-
formation. Once point-to-point correspondences have been
established, the global transformation is estimated as that
minimizing the sum of squared distances between them,
which can be solved in closed-form using one out of several
well-known techniques [11]. Robust alternatives to the least-
squares method can be used such as M-estimation or LTS
regression [12].

2.2. Some problems, and a solution

This simple iterative algorithm is reminiscent of the popu-
lar ICP algorithm to register surfaces [13]. It suffers from
the same flaw: the registration is likely to fail when the dis-
placement between the two images is large, and especially
when a large rotation is involved. In this case, the assump-
tion that simple local translations are sufficient to recover the
global rigid-body transformation turns out to be inadequate.
Moreover, the discrete nature of the search procedure is not
compatible with the continuous nature of the problem, and
such an algorithm is unlikely to recover subvoxel displace-
ments (e.g. one can think of a simple translation of half a
voxel in one of the three directions x, y or z).

Our idea is to modify the block-matching strategy (first
step of the algorithm) by replacing the search over local, dis-
crete, grid-based translations by a search over local, rigid-
body transformations. Then we propose to estimate the op-
timal global rigid-body transformation directly from those
local rigid-body transformations. With these two modifica-
tions, we aim to recover large displacements, and especially
some involving large rotations, with a subvoxel accuracy.

As a consequence of this new strategy, blocks in the
floating image are no longer constrained to lie on the image
grid, and the voxel values within these translated and rotated
blocks must be interpolated each time the similarity measure
is estimated, as opposed to within the simple translation
setting. This results in a computationally expensive scheme,
and we propose to use an efficient numerical optimization
technique to perform this block-matching. We previously
showed the NEWUOA algorithm to outperform classical al-
gorithms (Powell’s and Nelder-Mead’s algorithms) in terms
of speed, with similar robustness and accuracy for global
rigid-body registration of MR volumes [14]. This is why we
choose it here. In essence, NEWUOA is based on succes-
sive approximations of the similarity measure by quadratic
functions, whose maxima can be computed analytically [15].

Once the optimization has been performed, we utilize the
local rigid-body transformations Ri, i = 1 . . . n, to compute
a global rigid-body transformation. If we define the resid-
ual ri as ri ≡ || log(R) − log(Ri)||, where ||.|| is the Frobe-

nius norm, then the optimal transformation R̃ is estimated
as log R̃ = arg minR

∑n−h
i=1 (r2)i:n, where 0 ≤ h ≤ [n/2]

and (r2)1:n ≤ . . . ≤ (r2)n:n are the ordered squared resid-

uals. R̃ can be found iteratively [16], and each iteration m
is a simple least-squares problem with a closed-formed so-
lution: R̃m = exp[(

∑n−h
i=1 logRm−1

i:n )/(n − h)], where Rm−1
i:n ,

i = 1 . . . n, are the local rigid-body transformations ordered
according to their squared residuals at iteration m− 1 [17].

In the following, we compare this new strategy with the
classical one (e.g. using full search over translations and LTS
regression on the matched points) and with a third, hybrid
algorithm where we use the NEWUOA algorithm to compute
the translations, and LTS regression on the matched points.
These three algorithms use the correlation coefficient (CC) as
the similarity measure, in both mono- and multimodal con-
texts. We prefer it over the mutual information (MI) for two
reasons. First, the MI requires a large number of samples to
be meaningful. Second, the hypothesis of a linear relationship
between intensities is valid when there are at most two tissues
in the blocks, which is the case for most of the blocks when
they are small enough; those where this assumption does not
hold are likely to be eliminated from the estimation of the
global transformation owing to the LTS regression.

3. VALIDATION & RESULTS

We evaluate the three block-matching strategies in terms
of accuracy, robustness, capture range and run time, on
three datasets composed of two images I1 and I2 each. Ran-
dom rigid-body displacements are simulated for Datasets 1-2,
while the ground truth transformation is known for Dataset 3.

Implementation details. The three evaluated block-
matching algorithms use: exhaustive search of translations -
FS, NEWUOA search of translations - N-Tr, and NEWUOA



search of rigid-body transformations - N-Rig. For all these
algorithms, we use the same set of parameters for our exper-
iments: N = 7 voxels, ∆ = 5 voxels, Ω = 2 voxels, Σ = 1
voxel, l = 3 levels of pyramid and h = 70 %. NEWUOA
also requires specific parameters: it is not using Ω and Σ
but rather a search radius for the transformation parameters.
We choose this search radius to be similar to exhaustive
search parameters: 2 voxels for translation and 5 degrees for
rotation (when applicable). The resampling of the floating
image to compute the CC is done using trilinear interpolation.

Random experiments. For Datasets 1-2, I1 and I2 are
initially aligned; we generate 150 random rigid-body trans-
formations T with translations in the range [0, 10] mm and
rotations in the range [0, 45] deg. around each of the three im-

age axes, we apply T 1/2 to the first image I1, and T−1/2 to the
second image I2; this gives two misaligned images defined as,
respectively, Ĩ1(v) = I1(T−1/2(v)) and Ĩ2(v) = I2(T 1/2(v)),
where v are the voxel positions. The resampling uses trilinear
interpolation. We also add white Gaussian noise (std: 10%

of the average image signal) to both Ĩ1 and Ĩ2.

Warping indices. We define the initial warping index
ωi =

∑
v ||T (v) − v||/#(I1) ; ωi measures the misalignment

of Ĩ1 (reference image) and Ĩ2 (floating image). After regis-

tration of Ĩ2 onto Ĩ1, giving the transformation F , we define
the final warping index ωf =

∑
v ||T (v) − F (v)||/#(I1); ωf

measures the registration error.

Evaluation metrics. The registration is considered a suc-
cess if ωf is lower than the voxel size. We define the capture
range of the algorithm as the maximum ωi for which it suc-
ceeds. We define its accuracy as the average ωf for which
it succeeds. We define its robustness as the percentage
of random experiments being a success. We also report its
average run time (on one core of a Xeon 3.0 GHz PC).

Dataset 1. The first dataset utilized in our experiments
is from the BrainWeb MRI simulator1. We consider the
T1-weighted vs T2-weighted MRI (size: 181×217×181, voxel
size 1 mm3) with no noise (as it is added in our experiments).

Dataset 2. The second dataset is a real dataset coming
from an healthy subject. It is a dual echo T2/PD sequence
(size: 192×256×44, voxel size 1×1×3 mm3). As these two
images are acquired simultaneously, they are natively aligned.

Dataset 3. The last dataset is a real clinical dataset coming
from the R.I.R.E initiative for the comparison of multimodal
registration algorithms2. It consists of an MR image (size:
256×256×26, voxel size 1.25×1.25×4 mm3) and of a PET
image (size: 128×128×16, voxel size 2.59×2.59×8 mm3).
These two images are acquired with fiducial markers provid-
ing objective landmark points (available from the website)
from which the true transformation is computed.

Results. Our results on Dataset 1 are summarized in Ta-
ble 1. This table demonstrates that strategies based on
translation search (FS and N-Tr) have similar difficulties to

1http://www.bic.mni.mcgill.ca/brainweb
2http://www.insight-journal.org/rire

deal with large transformations and achieve a relatively poor
robustness. On the contrary, searching for local rigid-body
transformations allows for a large capture range associated
with a better robustness. In addition, utilizing NEWUOA
for the optimization leads to fast computation times, making
N-Rig as fast as FS even though local rigid-body transforma-
tions are optimized rather than simple discrete translations.

Cap. range Acc. Rob. Time
FS 84.0 0.14 ± 0.04 58.7 566

N-Tr 74.2 0.10 ± 0.03 44.7 270
N-Rig 101.6 0.59 ± 0.13 84.0 582

Table 1. Experiments on BrainWeb Simulated
Dataset. Reports of capture range (mm), accuracy (mm),
robustness (%) and average computation time (seconds) for
the 150 simulated transformations on Dataset 1.

In addition, we report results for Dataset 2 in Table 2.
These results confirm the results obtained on Dataset 1. The
use of NEWUOA to optimize rigid-body transformations for
each block leads to the best results allowing for a better ac-
curacy than with exhaustive search block-matching, a larger
capture range and a better robustness than with both exhaus-
tive search (FS) and NEWUOA translation search (N-Tr).
The proposed method is therefore able, thanks to the use of
local rigid-body transformations, to recover larger transfor-
mations compared with other block-matching techniques.

Cap. range Acc. Rob. Time
FS 97.6 0.51 ± 0.08 64.7 663

N-Tr 103.4 0.12 ± 0.16 82.7 112
N-Rig 119.0 0.57 ± 0.10 99.3 208

Table 2. Experiments on T2/PD Real Dataset. Re-
ports of capture range (mm), accuracy (mm), robustness (%)
and average computation time (seconds) for the 150 simulated
transformations on Dataset 2.

This is further illustrated in Fig. 1 on a difficult registra-
tion case with a large rotation. In this figure, we can see that
only the combination of NEWUOA for optimization and the
search for local rigid-body transforms is capable of recovering
the transformation accurately.

Finally, we present the results obtained on Dataset 3 in
Fig. 2, only for FS and N-Rig for the sake of concision. This
figure illustrates that N-Rig is able to recover the transfor-
mation accurately between the two images whereas FS is not
as accurate (difference visible close to the intersection of the
green and red axes on Fig. 2). This is confirmed by the quan-
titative results computed with respect to the true transfor-
mation. The initial ωi is of 27.9 mm. FS achieves a warping
index ωf of 9.8 mm, while N-Rig achieves 3.6 mm which is
below the largest voxel size of the MR image. N-Rig is there-
fore able to achieve sub-voxel accuracy for this dataset while
classical FS is not.

4. DISCUSSION & CONCLUSION

We have presented a new block-matching strategy for robust
rigid-body registration of multimodal images. It is based on



(a) (b) (c)
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Fig. 1. Registration Results of Real T2/PD Images.
Illustration of results on a difficult case of T2 / PD simulated
transformation. (a): reference image, (b): floating image,
(c,d,e): registered using respectively FS, N-Tr and N-Rig.

(a) (b) (c)

Fig. 2. Registration Results of Real MR / PET Im-
ages. PET image superimposed on the MR image after re-
sampling with (a): the true transformation, transformations
estimated with (b): FS, (c): N-Rig.

the optimization of local rigid-body transformations for each
block thanks to the NEWUOA algorithm. We have demon-
strated on simulated and real datasets that this approach
allows one to overcome the drawbacks of the classical exhaus-
tive search block-matching: correspondences are found in a
non-discrete fashion, and rotations may be better recovered.
In addition, searching for local rigid-body transformations al-
lows the algorithm to converge faster, which combined with
the NEWUOA optimization leads to faster computation times
for N-Rig than for FS.

We plan to investigate other optimization algorithms such
as Powell’s bounded optimization algorithm BOBYQA [18] as
it could allow one to constrain block displacements in a mean-
ingful range. Finally, this algorithm may be easily extended
to find affine transformations.
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