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Abstract In this article, we focus on the parameterization of
non-rigid geometrical deformations with a small number of
flexible degrees of freedom. In previous work, we proposed
a general framework called polyaffine to parameterize defor-
mations with a finite number of rigid or affine components,
while guaranteeing the invertibility of global deformations.
However, this framework lacks some important properties:
the inverse of a polyaffine transformation is not polyaffine
in general, and the polyaffine fusion of affine components
is not invariant with respect to a change of coordinate sys-
tem. We present here a novel general framework, called Log-
Euclidean polyaffine, which overcomes these defects.

We also detail a simple algorithm, the Fast Polyaffine
Transform, which allows to compute very efficiently Log-
Euclidean polyaffine transformations and their inverses on
regular grids. The results presented here on real 3D locally
affine registration suggest that our novel framework pro-
vides a general and efficient way of fusing local rigid or
affine deformations into a global invertible transformation
without introducing artifacts, independently of the way lo-
cal deformations are first estimated.
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1 Introduction

The registration of medical images is in general a difficult
problem, and numerous methods and tools have been al-
ready devised to address this task [13]. Still currently, much
effort continues to be devoted to finding adequate measures
of similarity, relevant parameterizations of geometrical de-
formations, efficient optimization methods, or realistic me-
chanical models of deformations, depending on the precise
type of registration considered.

In this article, we focus on the parameterization of non-
rigid geometrical deformations with a small number of flex-
ible degrees of freedom. This type of parameterization is
particularly well-adapted for example to the registration of
articulated structures [16] and to the registration of histolog-
ical slices [2, 18]. After a global affine (or rigid) alignment,
this sort of parameterization also allows a finer local regis-
tration with very smooth transformations [5, 7, 15, 19].

In [2], we parameterized deformations with a small
number of rigid or affine components, which can model
smoothly a large variety of local deformations. We pro-
vided a general framework to fuse these components into a
global transformation, called polyrigid or polyaffine, whose
invertibility is guaranteed. However, this framework lacks
some important properties: the inverse of a polyaffine trans-
formation is not polyaffine in general. The invertibility of
transformations is important in registration problems as it
ensures that one can resample images and segmented struc-
tures. Guarantying invertibility, and more generally the dif-
feomorphic nature of transformations has been a goal pro-
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moted for a long time in the medical image analysis commu-
nity. Here the point is not really about the invertibility itself,
which is already ensured by the previous polyaffine frame-
work, but rather that if the inverse of a polyaffine transfor-
mation should remains a polyaffine transformation so that
registering one image to the other or the reverse could be
considered equivalently. This is necessary for instance to
compute consistent statistics on transformations. A second
property which is lacking is that the polyaffine fusion of
affine components is not invariant with respect to a change
of coordinate system (i.e. is not affine-invariant). Here, we
present a novel general framework to fuse rigid or affine
components, called Log-Euclidean polyaffine, which over-
comes these defects and yields transformations which can
be very efficiently computed.

The article is organized as follows. In Sect. 2, we present
the Log-Euclidean polyaffine framework and its intuitive
properties. Then, we present the Fast Polyaffine Trans-
form (FPT), which allows to compute very efficiently Log-
Euclidean polyaffine transformations (LEPTs) and their in-
verses on a regular grid. Finally, we illustrate how FPTs can
be used in a real example of 3D registration based the algo-
rithm of [5].

2 A Log-Euclidean Polyaffine Framework

2.1 Previous Polyaffine Framework

Before presenting our novel polyaffine framework let us
briefly recall the original polyaffine framework, described
originally in [2]. The idea is to define transformations that
exhibit a locally affine behavior, with nice invertibility prop-
erties. Following the seminal work of [12], we model here
such transformations by a finite number N of affine com-
ponents. Precisely, each component i consists of an affine
transformation Ti and of a non-negative weight function
wi(x) which models its spatial extension: the influence of
the ith component at point x is proportional to wi(x). Fur-
thermore, we assume that for all x,

∑N
i=1 wi(x) = 1, i.e. the

weights are normalized.

2.1.1 Fusion of Displacements

In order to obtain a global transformation from several
weighted components, the classical approach to fuse the N

components simply consists in averaging the associated dis-
placements according to the weights [20]:

T (x) =
N∑

i=1

wi(x)Ti(x). (1)

The transformation obtained using (1) is smooth, but this ap-
proach has one major drawback: although each component

is invertible, the resulting global transformation is not invert-
ible in general. To remedy this, we proposed in [2] to rely
on the averaging of some infinitesimal displacements associ-
ated to each affine component instead. The resulting global
transformation is obtained by integrating an Ordinary Dif-
ferential Equation (ODE), which is computationally more
expensive but guarantees its invertibility and also yields a
simple form for its inverse. The nice invertibility properties
of this approach are illustrated in Fig. 1.

2.1.2 Polyaffine Framework

The polyaffine approach can be decomposed into three
steps:

Step 1: Associating Velocity Vectors to Affine Transforma-
tions. For each component i, one defines a family of veloc-
ity vector fields Vi(., s) parameterized by s, which is a time
parameter varying continuously between 0 and 1. Vi(., s)

satisfy a consistency property with Ti : when integrated be-
tween time 0 and 1, they should give back the transforma-
tion T . Hence the following definition:

Definition 1 The family of vector fields V (., s), where s

belongs to [0,1], is consistent with the transformation T if
and only if its integration between time 0 and 1 gives back
the transformation T :

1. for any initial condition x0 one can integrate between 0
and 1 the differential equation ẋ = V (x, s) so that x(1)

exists.
2. x(1) is equal to T (x0).

Several possible choices exist to associate velocity vec-
tor to affine transformations. One of the main contributions
of this work is precisely to propose a novel choice for such
speed vectors. Interestingly, we do not know at present how
many other choices exist and whether they might have even
better properties than the ones we have found so far.

Step 2: Fusing Velocity Vectors instead of Displacements.
The idea is then to average the vector fields Vi(., s) accord-
ing to the weight functions wi(x) to define an ODE fusing
the N components.

ẋ = V (x, s)
def=

∑

i

wi(x)Vi(x, s). (2)

This ODE is the infinitesimal analogous of the weighted
mean of displacements (1). Weight functions are very im-
portant and model the influence in space of each compo-
nent. They control in particular the sharpness of transitions
between the fused affine transformations. Also, they can
take into account the geometry of anatomical regions of in-
terest, as will be the case in the experimental results on 3D
MRI data given in the sequel.
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Fig. 1 Example result of the fusion of two affine transformation with
the direct and the infinitesimal approaches. Two translations (on top)
and two rotation (on bottom) of opposite axis/angle are fused and we
display here the resulting deformation of a regular grid with the di-
rect averaging of displacements on the left, and with the infinitesi-
mal fusion of the transformations in the polyaffine framework on the
right. One can clearly see that the grid folds onto itself with the di-
rect averaging method. This means that different physical points are
mapped to the same space point after deformation. Thus, the transfor-
mation is not invertible as the points where the grid overlap should be

mapped to two different locations. On the contrary, the grid deformed
by the infinitesimal method does not fold and remains invertible in
this example. The two regions used were centered at points (−2,0)

and (+2,0), with the following weights that ensure a smooth transi-
tion between the two components (given here in unnormalized form):
wi(x) = 1/(1 + ((x1 − ci)/σ )2), where c1 = −2, c2 = +2 and σ = 5.
The affine transformations of the two components where translations
t1 = (3,1)T and t2 = (−1.5,3)T for the top images, and two rotations
of opposite angles of magnitude 0.63 radians around the origin of each
region for the bottom images

Step 3: Integration of the Polyaffine ODE. In this infinites-
imal framework, the value at point x0 of the global trans-
formation T fusing the N components is obtained via the
integration of (2) between 0 and 1, with the initial condi-
tion x(0) = x0.

2.1.3 What Velocity Vectors for Affine Transformations at
Step 1?

Let us take an affine transformations T = (M, t), where M

is the linear part and t the translation. To define a family of
velocity vector fields consistent with T , it was proposed in
[2] to rely on the matrix logarithm of the linear part M of T .
More precisely, let L be the principal matrix logarithm of
M . The family of speed vector fields V (., s) we associated
to T writes:

V (x, s) = t + L.(x − st) for s ∈ [0,1]. (3)

In practice, the matrix logarithm can be efficiently com-
puted using the ‘Inverse Scaling and Squaring’ method [10].
As for the ‘Scaling and Squaring’ method in the exponen-
tial case, this algorithm is based on the idea that computing
the logarithm of a matrix close to the identity can be done
very accurately and at a very small computational cost, for
instance using Padé approximants. In order to transform a
matrix into another matrix closer to the identity, the ‘Inverse
Scaling and Squaring’ method uses the computation of suc-
cessive square roots. Once the 2N th root of a matrix M has
been computed, one can use the following equality to com-
pute the logarithm of M :

log(M) = 2N. log
(
M2−N )

. (4)

More details on how square roots can be iteratively com-
puted and on the choice of the level of squarings N can be
found in [10].
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2.1.4 Well-Definiteness of the Principal Logarithm

One should note that using principal logarithms of the lin-
ear part of affine transformations at the first step of the
polyaffine framework is not always possible. The theoret-
ical limitation implied by this particular choice of velocity
vectors is the following: the principal logarithm of an invert-
ible matrix M is well-defined when the (complex) eigenval-
ues of M do not lie on the (closed) half-line of negative real
numbers [10]. A more detailed analysis of the necessary and
sufficient condition for a real matrix to have a real logarithm
is given in [8].

For rotations, this means quite intuitively that the amount
of (local) rotation present in each of the components should
be strictly below π radians in magnitude. This can be clearly
seen in the domain of matrix logarithms, where this con-
straint corresponds to imposing that the imaginary part of
eigenvalues be less then π in magnitude. Figure 2 illustrates
this general situation, which is not specific to rotations.

For general invertible linear transformations with positive
determinant, the interpretation of this constraint on eigen-
values is not so clear, since rotational and non-rotational
deformations are intertwined. However, one should note
the closed half-line of negative number is a set of null
(Lebesgue) measure in the complex plane, which indicates
that very few linear transformations with positive determi-
nant (corresponding to extremely large deformations) will
not have a principal matrix logarithm. From a practical point
of view, one can anyway just check whether the constraint
is satisfied by computing numerically the eigenvalues of M ,
which only amounts to solving a third degree polynomial
equation for 3D affine transformations.

In the context of medical image registration, we do not
believe this restriction to be problematic, since a global
affine alignment of the images to be registered is always

performed first. This factors out the largest rotations and
it would be very surprising from an anatomical point of
view to observe very large deformations (e.g., local rota-
tions close to 180 degrees) of an anatomical structure from
one individual to another after the affine alignment of the
anatomies of these individuals.

2.1.5 Heavy Computational Burden at Step 3

Now, from a practical point of view, integrating the ODE
given by (2) with the velocity vectors of (3) is quite com-
putationally expensive, especially when one wishes to do
this for all the points of a 3D regular grid, for example a
256 × 256 × 100 grid, which is commonly in the case for
T1-weighted MR images. We will see in the rest of this
section how one can drastically reduce this complexity by
slightly modifying the speed vectors of (3).

2.2 Simpler Velocity Vectors for Affine Transformations

Let us now see how one can define much simpler velocity
vectors for affine transformations than the ones given in (3).
The basic idea is to rely on the logarithms of the transfor-
mations themselves, and not only on the logarithms of their
linear parts. These logarithms can be defined in an abstract
way in the context of the theory of Lie groups, as detailed
in [1]. Interestingly, thanks to the faithful representation of
these transformations obtained with homogeneous coordi-
nates, these logarithms can be computed in practice via ma-
trix logarithms.

2.2.1 Homogeneous Coordinates

Homogeneous coordinates are a classical tool in Computer
Vision. They are widely used to represent any n-dimensional

Fig. 2 Constraints imposed on affine transformations by the use of
the principal matrix logarithm. Left: only affine transformations whose
(complex) eigenvalues do not lie on the (closed) half-line of negative
real numbers have a principal logarithm and can be handled by our
framework. Intuitively, this corresponds to imposing that (local) rota-

tions be smaller in magnitude than π radians. This can be seen more
clearly on the principal logarithms of these admissible affine transfor-
mations: the imaginary part of their eigenvalues must be smaller than π

in magnitude. This is illustrated on the right part of this figure. A more
detailed discussion of this constraint is given in Sect. 2.1
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affine transformation T by (n + 1) × (n + 1) matrix, writ-
ten here T̃ . Such a representation is called by mathemati-
cians ‘faithful’ (in the sense of representation theory), which
means that there is no loss of information in this representa-
tion. T̃ takes the following form:

T ∼ T̃
def=

(
M t

0 1

)

, (5)

where M is the linear part of T (n × n matrix) and t its
translation. In this setting, points x of the ambient space are
represented by n+ 1-dimensional vectors x̃, adding an extra
‘1’ after their coordinates:

x ∼ x̃
def=

(
x

1

)

.

This way, the action of the affine transformation on a point
x can be obtained simply in terms of matrix multiplication
and is given by T̃ .x̃.

2.2.2 Principal Logarithms of Affine Transformations

Using homogeneous coordinates, the principal logarithm of
the affine transformations themselves can be computed in a
simple way.

The main point here is that the principal logarithm of an
affine transformation T is represented in homogeneous co-
ordinates by the matrix logarithm of its representation T̃ .
This matrix logarithm takes the following form:

log
(
T̃

) =
(

L v

0 0

)

,

where log stands for the principal matrix logarithm. L is an
n×n matrix and v an n-dimensional vector. Exactly as in the
former subsection, L is the principal matrix logarithm of M .
But v is not equal in general to the translation t . Actually,
the difference between our novel approach and the previous
one resides essentially in this v.

Interestingly, the well-definiteness of the principal loga-
rithm of an affine transformation T is equivalent to the well-
definiteness of the principal logarithm of its linear part M .
The reason for this is that the spectrum of T̃ is exactly that of
its linear part M plus an extra eigenvalue equal to 1, thanks
to the form taken by T̃ (see (5)). Hence the equivalence of
the existence of both principal logarithms.

2.2.3 Simpler Velocity Vectors for Affine Transformations
at Step 1 of the Polyaffine Framework

Using now principal logarithms of affine transformations in-
stead of the principal logarithms of their linear parts, one can
now associate to an affine transformation T a simpler family
of velocity vector fields than in (3) in the following way:

V (x, s) = V (x) = v + L.x for s ∈ [0,1]. (6)

What is remarkable here is that the velocity vector field
at time s associated to T does not depend on s! To prove
the consistence of this speed vector with T , let us write the
associated ODE:

ẋ = v + L.x. (7)

While the mathematical form taken by (7) might seem un-
familiar, it is much simpler (and more familiar) when ex-
pressed in homogeneous coordinates. It simply writes:

˙̃x = log
(
T̃

)
.x̃, (8)

which is this time a linear ODE. It is well-known from the
theory of linear ODEs [23] that (8) can be solved analyti-
cally and that its solutions are well-defined for all time. With
an initial condition x0 at time 0, the value x(s) of the unique
mapping x(.) satisfying (7) is given in terms of matrix ex-
ponential by:

x̃(s) = exp
(
s. log

(
T̃

))
.x̃0. (9)

By letting s be equal to 1, we thus see that our new velocity
vectors are truly consistent with the transformation T .

The ODE of (7) is called autonomous (or equivalently
stationary). Such ODEs have some very nice mathemat-
ical properties, which can be expressed in terms of one-
parameter subgroups of transformations. These properties
are detailed in [1, Chap. 2]. In short, the flow �(., s) of
an autonomous ODE is a one-parameter subgroup of the
group of diffeomorphisms, which means the (possibly) large
deformations obtained at time 1 result of the composition
of a large number of arbitrarily small identical deforma-
tions.

2.2.4 One-Parameter Subgroups
of Affine Transformations

From the explicit form taken by the solutions of this ODE
(see (9)), we can see that the associated flow is simply the
family of affine transformations (T s(.)), where T s is the
affine transformation represented by exp(s. log(T̃ )), i.e. the
sth power of T .

From the general properties of flows associated to au-
tonomous ODEs, we know that the family of transforma-
tions (T s(.)) is a one-parameter subgroup of diffeomor-
phisms. From this point of view, its infinitesimal genera-
tor is the vector field V (x) = v + L.x. From the viewpoint
of the affine group (in contrast to diffeomorphisms), (T s)

is also a one-parameter subgroup of affine transformations,
whose infinitesimal generator is this time the principal log-
arithm of T . Interestingly, it can be shown with the clas-
sical tools of Lie groups theory that all continuous one-
parameter subgroups of affine transformations are of this
form [22].
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2.3 Log-Euclidean Polyaffine Transformations

2.3.1 An Autonomous ODE for Polyaffine Transformations

With the velocity vectors defined by (6), one can de-
fine a novel type of polyaffine transformations using the
steps 2 and 3 of the Polyaffine framework. In the sequel,
we will refer to these new polyaffine transformations as
Log-Euclidean polyaffine transformations (or LEPTs). This
name comes from our work on diffusion tensors [3], where
we have already used principal logarithms to process an-
other type of data.

More precisely, let (Mi, ti) be N affine transformations,
and let (Li, vi) be their respective principal logarithms.
Then one can fuse them according to the weights wi(x)

with the following ODE, which is this time autonomous, i.e.
without any influence of the time parameter s in the second
member of the equation:

ẋ =
∑

i

wi(x) (vi + Li.x) . (10)

Exactly as in the case of the non-autonomous polyaffine
ODE based on (3), solutions to this novel ODE are well-
defined for all time s (i.e. never go infinitely far in a finite
time, do not ‘blow up’), regardless of the initial condition.
The proof is extremely similar (although simpler, in fact) to
that given in [2] for the previous polyaffine framework.

Now, we know from the general properties of stationary
ODEs (which were presented above) that the flow T (s, .)

of this ODE forms a one-parameter subgroup of diffeo-
morphisms: T (0, .) is the identity and T (r, .) ◦ T (s, .) =
T (r + s, .).

2.3.2 One-Parameter Subgroups of LEPTs

Exactly like in the affine case, the ODE given by (10) defines
not only a one-parameter subgroup of diffeomorphisms,
it also yields a one-parameter subgroup of Log-Euclidean
polyaffine transformations. More precisely, a simple change
of variable (s �→ s

2 ) shows that the flow at time 1
2 , writ-

ten here T ( 1
2 , .), corresponds to a polyaffine transforma-

tion whose parameters are the same weights as the orig-
inal ones, but where the affine transformations have been
transformed into their square roots (i.e. their logarithms have
been multiplied by 1

2 ). Similarly, the flow at time s, T (s, .)

corresponds to a polyaffine transformations with identical
weights but with the sth power of the original affine trans-
formations.

As a consequence, T (s, .) can be interpreted as the
sth power of the Log-Euclidean polyaffine transformation
defined by T (1, .). In particular, the inverse of T (1, .)

(resp. its square root) is given simply by T (−1, .) (resp.

T (1/2, .)), which is the polyaffine transformation with iden-
tical weights but whose affine transformations have been
inverted (resp. have been transformed into their square
roots).

One should note that our previous polyaffine transforma-
tions do not have the same remarkable algebraic properties
as Log-Euclidean polyaffine transformations. In our previ-
ous framework, the inverse of a polyaffine transformation
was not even in general a polyaffine transformation. LEPTs
have very intuitive and satisfactory properties, because they
are based on a fusion of velocity vectors much better adapted
to the algebraic properties of affine transformations than the
speed vectors we previously used.

In the next section, we will see how this specific alge-
braic property of our novel framework can be used to al-
leviate drastically the computational cost of Step 3 of the
polyaffine framework (i.e. the cost of the integration of the
polyaffine ODE).

2.3.3 Affine-Invariance of LEPTs

Contrary to the previous polyaffine framework, our novel
Log-Euclidean framework has another sound mathematical
property: affine-invariance. This means the Log-Euclidean
polyaffine fusion of affine transformations is invariant with
respect to any affine change of coordinate system. This type
of fusion is thus a fusion between geometric transforma-
tions and not matrices since it does not depend at all on the
arbitrary choice of coordinate system chosen to represent
them.

To see why this is so, let us see how the various ingredi-
ents of our framework are affected by a change of coordinate
system induced by an affine transformation A. In homoge-
neous coordinates, these changes are the following:

• a point x̃ becomes ỹ = Ã.x̃

• a weight function x̃ �→ wi(x̃) becomes ỹ �→ wi(Ã
−1.ỹ)

• an affine transformation T̃i becomes Ã.T̃i .Ã
−1.

In our new coordinate system, the Log-Euclidean polyaffine
ODE writes in homogeneous coordinates:

˙̃y =
∑

i

wi

(
Ã−1.ỹ

)
log

(
Ã.T̃i .Ã

−1).ỹ. (11)

Then, using the property log(Ã.T̃i .Ã
−1) = Ã. log(T̃i).Ã

−1,
the simple change of variable ỹ �→ Ã.x̃ shows that a
mapping s �→ x̃(s) is a solution of the Log-Euclidean
polyaffine ODE (10) if and only if s �→ Ã.x̃(s) is a so-
lution of (11). This means that the solutions of the Log-
Euclidean polyaffine ODE in the new coordinate system are
exactly the same as in the original coordinate system: our
novel polyaffine framework is therefore not influenced by
the choice of a coordinate system. The previous polyaffine
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framework does not have this property, because it does not
take sufficiently into account the algebraic properties of
affine transformations.

2.3.4 Another Reason Why our Novel Polyaffine
Framework is Called Log-Euclidean

In the special case where none of the weight functions wi(x)

depend on x, the Log-Euclidean polyaffine fusion of the
affine transformation Ti simply yields an affine transforma-
tions T , which is given by the following Log-Euclidean
mean:

T = exp

(
∑

i

wi log(Ti)

)

.

This is another reason why we refer to our novel polyaffine
framework as Log-Euclidean. Indeed, the use of a gener-
alization to rigid and affine transformations of our Log-
Euclidean framework for tensors [4] is implicit in this novel
framework. More details on the Log-Euclidean framework
for linear transformations can be found in [1, Chap. 6].

2.3.5 Synthetic Examples

Examples of 2D LEPTs are shown in Fig. 3. In these ex-
amples, one can see how antagonistic affine transformations
(i.e. transformations whose direct fusion results in local sin-
gularities) can be globally fused into a regular and invertible
polyaffine transformation.

Interestingly, we have observed in our experiments that
the Log-Euclidean and the previous polyaffine frameworks
provide similar results. Figure 4 illustrates the striking close-
ness between both frameworks. Notable differences only ap-
pear when very large deformations are fused.

Therefore, the advantage of our Log-Euclidean polyaffine
framework over the previous one does not reside in the qual-
ity of its results, which are very close to those of the previous
one. Rather, it resides in its much better and more intuitive
mathematical properties, which allow for much faster com-
putations, as will be shown in the next section. This situation
is somehow comparable to the closeness between the affine-
invariant [17] and Log-Euclidean [3] Riemannian frame-
works used to process diffusion tensors. They also yield very
similar results, but in a simpler and faster way in the Log-
Euclidean case.

Fig. 3 Fusing velocity vectors of two translations (top row), two ro-
tations (middle row) and a translation and an anisotropic swelling
(bottom row). From left to right: Log-Euclidean polyaffine speed vec-
tors computed from the two affine transformations with the novel
framework, fused speed vectors, and a regular grid deformed after

integration of the autonomous ODE. The weights used for the fusion
were two functions of the first coordinate as in Fig. 1. Note how locally
antagonistic displacements are fused in an invertible way, resulting in
compressions or swelling at the boundary between the two components
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Fig. 4 Comparison between the new and the previous Log-Euclidean
polyaffine framework. We superimpose here the deformation of a reg-
ular grid resulting from the fusion of two rotations (as in Fig. 3) using
the new log-Euclidean method and the previous poly-affine frame-

work. One cannot see any difference at a large scale (on the left): one
has to zoom quite intensively to see the very small difference (on the
right)

3 Fast Polyaffine Transform

In this section, we show how one can use the specific al-
gebraic properties of the Log-Euclidean polyaffine frame-
work to obtain fast computations of LEPTs. In particular, we
propose an efficient algorithm to evaluate a Log-Euclidean
polyaffine transformations on a regular grid. If N is the num-
ber of intermediate points chosen to discretize the continu-
ous trajectory of each point, we present here an algorithm
only requiring log2(N) steps to integrate our autonomous
polyaffine ODE, provided that the trajectories of all the
points of the regular grid are computed simultaneously. This
drastic drop in complexity is somehow comparable to that
achieved by the ‘Fast Fourier Transform’ in its domain. The
key to this approach lies in the generalization to the non-
linear case of a popular method which is widely used to
compute numerically the exponential of a square matrix.

3.1 Matrix Exponential and the ‘Scaling and Squaring’
Method

The matrix exponential of a square matrix can be computed
numerically in a large number of ways, with more or less
efficiency [14]. One of the most popular of these numerical
recipes is called the ‘Scaling and Squaring’ method, which
is for example used by Matlab™ to compute matrix expo-
nentials [9]. Fundamentally, this method is very efficient be-
cause it takes advantage of the very specific algebraic prop-
erties of matrix exponential, which are in fact quite simple,
as we shall see now. For any square matrix M , we have:

exp(M) = exp

(
M

2

)

. exp

(
M

2

)

= exp

(
M

2

)2

. (12)

This comes from the fact that M commutes with itself in the
sense of matrix multiplication. Iterating this equality, we get

for any positive integer N :

exp(M) = exp

(
M

2N

)2N

. (13)

Then, the key idea is to realize that the matrix exponen-
tial is much simpler to compute for matrices close to zero. In
this situation, one can for example use just a few terms of the
infinite series of exponential, since high-order terms will be
completely negligible. An even better idea is to use Padé ap-
proximants, which provide excellent approximations by ra-
tional fractions of the exponential around zero with very few
terms. For more (and recent) details on this topic, see [9].

The ‘Scaling and Squaring’ Method for computing the
matrix exponential of a square matrix M can be sketched as
follows:

1. Scaling step: divide M by a factor 2N , so that M
2N is close

enough to zero (according to some criterion based on the
level of accuracy desired: see [9] for more details).

2. Exponentiation step: exp( M
2N ) is computed with a high

accuracy using for example a Padé approximant.
3. Squaring step: using (13), exp( M

2N ) is squared N times
(only N matrix multiplications are required) to obtain a
very accurate estimation of exp(M).

In the rest of this section, we will see how one can gen-
eralize this method to compute with an excellent accuracy
polyaffine transformations based on autonomous ODEs.

3.2 A ‘Scaling and Squaring’ Method for LEPTs

The goal of the method described below is to compute ef-
ficiently and with a good accuracy the values of a Log-
Euclidean polyaffine transformation at the vertices of a reg-
ular n-dimensional (well, 2D or 3D in practice) grid. In the
sequel, this method will be referred to as the ‘Fast Polyaffine
Transform’ (or FPT).
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3.2.1 Algebraic Properties of Log-Euclidean Polyaffine
Transformations Revisited

Let T (s, .) be the flow associated to the autonomous
polyaffine ODE (10), as in Sect. 2.3. As mentioned before,
this flow is a one-parameter subgroup of LEPTs:

T (0, .) = Id and

for all r, s : T (r, .) ◦ T (s, .) = T (r + s, .) .

As a consequence, exactly as (12) for the matrix exponential,
we obtain for r = s = 1

2 :

T (1, .) = T

(
1

2
, .

)

◦ T

(
1

2
, .

)

= T

(
1

2
, .

)2

.

Iterating this equality, we get for any positive integer N :

T (1, .) = T

(
1

2N
, .

)2N

. (14)

Intuitively, (14) means that what the deformation observed
at time 1 results of 2N times the repetition of the small de-
formations observed at time 1

2N . The total deformation is
entirely determined by the initial (and small) deformations
occurring just at the beginning of the integration of our ODE
(which is a well-known and general phenomenon with au-
tonomous ODEs).

3.2.2 Fast Polyaffine Transform

We can now generalize the ‘Scaling and Squaring’ Method
to the Log-Euclidean polyaffine case. This method, called
the ‘Fast Polyaffine Transform’, follows the usual three
steps:

1. Scaling step: divide V (x) (the field of velocity vectors)
by a factor 2N , so that V (x)

2N is close enough to zero (ac-
cording to the level of accuracy desired).

2. Exponentiation step: T ( 1
2N , .) is computed using an ade-

quate numerical scheme.
3. Squaring step: using (14), T ( 1

2N , .) is squared N times
(in the sense of the composition of transformations; only
N compositions are required) to obtain an accurate esti-
mation of T (1, .), i.e. of the polyaffine transformation to
be computed (e.g., an average relative error of the order
of 0.5%).

From a practical (or numerical) point of view, two points
remain to be clarified. First what numerical scheme can be
used to compute T ( 1

2N , .) with a good precision during the
‘exponentiation step’? Second, how should the composition
(which is the multiplication operator for transformations) be
performed during the ‘squaring step’?

3.2.3 Exponentiation Step

Exactly as in the matrix exponential case, integrating an
ODE during a very short interval of time (short with respect
to the smoothness of the solution) is quite easy. We can use
any of the methods classically used to integrate ODEs during
short periods of times, like explicit schemes or Runge-Kutta
methods, which are based on various uses of the Taylor de-
velopment to compute solutions of ODEs (see [11] for more
details on these methods).

The simplest of these schemes is undoubtedly the first-
order explicit scheme. In our case, it simply consists in com-
puting the following value:

First Order Explicit Exponentiation Scheme (E.S.):

T

(
1

2N
,x

)

E.S.

def= x + 1

2N
.V (x).

Generalizing the ideas already developed in [2] for the pre-
vious polyaffine framework, we can also use a second-order
scheme which takes into account the affine nature of all
components, and which is exact in the case of a single com-
ponent. We will refer to this scheme as the affine exponenti-
ation scheme in the following. It writes:

Second Order Affine Exponentiation Scheme (A.S.):

T

(
1

2N
,x

)

A.S.

def=
N∑

i=1

wi(x).T
1

2N

i (x),

where T
1

2N

i is the 2N th root of the affine transformation Ti .
We will see later in this section that the accuracy of this
numerical scheme is slightly better than that of the explicit
scheme, probably because it takes into account the linear
nature of the components.

3.2.4 Composing Discrete Transformations

In this work, we are evaluating our transformation at a finite
number of vertices of a regular grid. Practically, one has to
resort to some kind of interpolation/extrapolation technique
to calculate the value of such a transformation at any spatial
position. Numerous possibilities exist in this domain, such
as nearest-neighbor interpolation, bi- or tri-linear interpo-
lation, continuous representations via the use of a basis of
smooth functions like wavelets, radial basis functions. . . . In
the following, we use bi- and tri-linear interpolations, which
are simple tools guaranteeing a continuous interpolation of
our transformation. The best type of interpolation technique
for the purposes of our Fast Polyaffine Transform remains
to be determined and will be the subject of future work.
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3.2.5 Algorithmic Complexity

Note that to compute polyaffine transformations using the
FPT, the weight functions need only be evaluated once per
voxel, and not at every step of the integration of the ODE,
as was done in [2]. When weight functions are stored in
the computer memory as 3D scalar images, this offers the
opportunity of removing them from the computer RAM af-
ter the exponentiation step. This could be particularly useful
when a large number of affine components are used on high-
resolution images.

Furthermore, the equivalent of 2N intermediate points is
achieved in only N steps, in contrast with the 2N steps re-
quired by a traditional method. After the 2N th root has been
computed, only N compositions between transformations
need to be computed, which is an operation based on inter-
polation techniques and therefore not very computationally
expensive. Let Nvox be the number of voxels and let Npts

be the number of intermediary points chosen to integrate the
polyaffine ODE. The complexity of our new algorithm is
thus O(Nvox. log2(Npts)), whereas the complexity of tradi-
tional methods of integration of this ODE is O(Nvox.Npts).

3.2.6 Computing the Inverse of a Polyaffine Transformation

As pointed out in Sect. 2.3, in our new framework the in-
verse of a polyaffine transformation is simply the polyaffine
transformation associated with the opposite vector field (i.e.
the polyaffine transformation with the same weights but in-
verted affine components). As a consequence, the inverse of
a polyaffine transformation can be also computed using the
Fast Polyaffine Transform. Actually, any power (square root,
etc.) a polyaffine transformation can be computed this way.

3.3 2D Synthetic Experiments

Throughout this results section, we measure the accuracy of
our results by computing the relative difference of the re-
sults with respect to accurate estimations of the real (contin-
uous) transformations. These reference transformations are
obtained by a classical integration (i.e., a fixed time step was
used) of the Log-Euclidean polyaffine ODE for each of the
pixels of the grid, using a small time step: 2−8.

One should note that several parameters influence the ac-
curacy of the results:

• the scaling 2N

• the geometry of the regular grid
• the interpolation method
• the extrapolation method.

Thus, compared to the classical estimation method with
a fixed time step, our fast transform possesses three new
sources of numerical errors: the geometry of the regular grid

(the transformation is evaluated only at a finite number of
points, the more points the more precise the result will be),
the interpolation method and the fact that regardless of the
extrapolation method, some part of the information about
what happens outside of the regular grid is lost. It is there-
fore important to check that the accuracy of the results ob-
tained with the FPT are not spoiled by these new sources of
error.

3.3.1 A Typical FPT

Figures 5 and 6 display the results of a typical Fast
Polyaffine Transform, using two rotations of opposite an-
gles, and a scaling of 26 (and therefore 6 squarings). The
regular grid chosen to sample the transformation is of
50 × 40 pixels. The affine exponentiation scheme is used.

On average, the results are quite good: the average rela-
tive error is approximately equal to 0.6%. However, much
higher errors (around 11%) are obtained at the boundary,
which comes from the fact that the bi-linear interpolation we
use here does not take into account the rotational behavior
of the transformation outside of the grid.

3.3.2 Using Bounding Boxes to Correct Boundary Effects

The numerical errors stemming from the loss of informa-
tion at the boundary of the regular grid can be drastically re-
duced for example by enlarging the regular grid used. A sim-
ple idea consists in adding to the regular grid some extra
points so that it contains the points of boundary deformed by
Euclidean fusion of the affine components. A simple method
to compute the bounding box is to rely on the direction fu-
sion of the vector speed, as illustrated by Fig. 7.

Figure 8 presents the accuracy of the results given by the
FPT using such an extended regular grid. This time, errors
are much lower: the relative accuracy of the resulting es-
timation of the polyaffine transformation is on average of
0.21% (instead of approximately 0.6% previously), and the
maximal relative error is below 3.2% (instead of 11% pre-
viously). This simple and efficient technique, which drasti-
cally reduces the effect of boundary effects on the FPT, is
used systematically in the sequel.

3.3.3 Influence of Scaling

What scaling should be chosen when the FPT is used? Of
course, this depends on the quantity of high frequencies
present in the polyaffine transformations. The more sharp
changes, the smaller the scaling should be and the finer the
sampling grid should also be.

Figure 9 displays the performance in accuracy of the FPT
when the number of iterations N varies. In this experiment,
we use the same fusion of rotations as in the previous exper-
iment. In this case, the optimal scaling is 25. Larger scalings
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Fig. 5 Fast polyaffine transform for two rotations. A scaling factor
of 26 was used in this experiment, and there are therefore 6 squaring
steps. Note how the deformation is initially very small, and increases
exponentially. The accuracy of the FPT results was measured with
respect to the results given by a classical integration (voxel by voxel)

of the polyaffine ODE with 28 intermediate points. The relative error
of the resulting estimation of the polyaffine transformation is below
0.6% on average and the maximal relative error, as expected, is made
at the boundary and is below 11%

Fig. 6 Fast polyaffine transform for two rotations: error localization
and evolution. Left: the errors at the vertices of our 50 × 40 regular
grid are displayed as an image, after a FPT with 6 squarings. The max-
imal relative errors are concentrated on the boundary of our grid. This
is due to the inaccuracy of our extrapolation technique, which is only
bi-linear and does not deal very precisely with the affine nature of the
polyaffine transformation. Right: the evolution of errors along squar-
ings is displayed. The relative error of the resulting estimation of the
polyaffine transformation is below 0.6% on average and the maximal
relative error is below 11%

do not result in better accuracy, essentially because of the
missing information at the boundary.

We observed in the experiments on real 3D medical im-
ages described in the sequel that even much smaller scal-
ings (typically 23 or 22) could be used without sacrificing
the accuracy of the result. In short, introducing even a small

Fig. 7 An extended grid for accurate discrete polyaffine transforms.
Internal plus signs: the bounding box of the original regular grid used
to sample the Log-Euclidean polyaffine fusion between two rotations.
Stars: its deformation by the direct fusion of the two rotations, which
can be computed at a very low computational cost. External plus signs:
bounding box of the extended regular grid which now contains all the
star points. This enlarging procedure considerably reduces the impact
on the Fast Polyaffine Transform of the loss of information beyond the
boundaries of the regular grid, as shown in Fig. 8

number of intermediate points substantially regularizes the
fused transformation with respect to the direct fusion, since
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this suffices to remove singularities in practice. Using more
intermediary points, i.e. 5 or more squarings, offers the pos-
sibilities to be very close to the ideal polyaffine transforma-
tion, which provides a simple way to compute the inverse of
the fused transformation with an excellent accuracy, as will
be shown in this subsection.

Moreover, one should also note from Fig. 9 that our Fast
Polyaffine Transform is very stable: using unnecessary iter-
ations (or equivalently a very large scaling) does not result
in numerical instabilities. The result is mostly independent
of N for N > 6. The relative error of the resulting estimation
of the polyaffine transformation converges toward 0.2% on

Fig. 8 Using an enlarged sampling grid: impact on errors localization
and evolution for the fast polyaffine transform for two rotations. Left:
the errors at the vertices of our 50 × 40 regular grid are displayed as
an image, after a FPT with 6 squarings. Note how the maximal errors
are concentrated this time on the region of highest compression. Right:
the evolution of errors along squarings is displayed. This time, errors
are much lower: the relative error of the resulting estimation of the
polyaffine transformation is on average below 0.21% (instead of below
0.6% without an enlarged grid), and the maximal relative error is below
3.2% (instead of 11% without an enlarged grid)

average and the maximal relative error converges toward 2%
for large Ns. The residual maximal error is essentially due
to the sampling of the transformation on a grid and the use
of an interpolation method between the points of the grid,
since an extended grid is used to drastically reduce errors at
the boundary of the grid.

3.3.4 Comparison between Numerical Schemes

Here, we compare the explicit affine exponentiation schemes.
We perform this comparison on our three favorite examples:
the fusion of two rotations, the fusion of two antagonistic
translations, and the fusion between a translation and an
anisotropic swelling as in Fig. 3. The accuracy of the FPT
using both numerical schemes is compared in all three cases.
Figure 10 shows the results.

Both numerical schemes make the FPT converge toward
the same accuracy as the number of squarings increases, but
the convergence is slightly faster in the affine exponentia-
tion case: the average error is 40% smaller in the affine case
for scalings smaller than 26. Interestingly, the two numerical
schemes are identical for the fusion of the two translations,
because the linear parts of these two affine translations are
equal to the identity.

3.3.5 Inverting Polyaffine Transformations with the FPT

As pointed out previously, in our novel framework, the in-
verse of a polyaffine transformation is simply (and quite
intuitively) the polyaffine transformation with the same
weights and with inverted affine components. This inverse
can also be computed using the Fast Polyaffine Transform,

Fig. 9 Fast polyaffine transform for two rotations: influence of the
scaling. Left: regular grids deformed by polyaffine transformations
obtained with the FPT using scaling factors of (from left to right on
top): 21, 22, 24, and (from left to right on bottom): 26, 210 and 215.
Note how close the results are when the number of squarings N > 6.

Right: One can see that the accuracy of the results is extremely stable
for N > 6: it is not necessary to use larger scalings in the example
considered here. Even more remarkably, using larger scalings does not
degrades the results: our FPT is very stable
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Fig. 10 Comparison between numerical schemes. From left to right
and then from top to bottom: fusion between two rotations, two trans-
lation and finally a translation and an anisotropic swelling. A.S. stands
for ‘affine exponentiation scheme’ and E.S. for ‘explicit exponenti-
ation scheme’. Interestingly, the two numerical schemes are identi-
cal for the fusion of the two translations, because the linear parts of

these two affine translations are equal to the identity. Both numerical
schemes make the FPT converge toward the same accuracy as the num-
ber of squarings increases, but the convergence is substantially faster
in the case of the affine exponentiation scheme: in the two cases where
the schemes yield different results, the average relative error is 40%
smaller in the affine case for scalings smaller than 26

Fig. 11 Inverting a polyaffine transformation with the FPT. From left
to right and then from top to bottom: our regular grid is deformed by
the composition between the FPT of the fusion between two rotations

and the FPT of its inverse, for different numbers of squarings N . One
can see that an excellent accuracy of inversion is already achieved with
6 squarings

and in this experiment we tested the accuracy of the inver-
sion obtained this way. The affine exponentiation scheme
was used for exponentiation along with a 50 × 40 grid.

Figure 11 presents with deformed grids the evolution of
the accuracy of inversion when the number of squarings
varies, in our example of fusion between two rotations. Fig-
ure 12 presents the quantitative results in the three cases of
fusion used in the previous experiment. We thus see that an

excellent quality of inversion can be achieved using a small
number of squarings, typically 6.

3.4 3D Registration Example

In [2] we showed how it is possible to optimize the para-
meters of polyrigid or polyaffine transformations in medical
image registration experiments. However, this leads in prac-
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Fig. 12 Inverting a polyaffine transformation with the FPT: quanti-
tative results. From left to right and then from top to bottom: fusion
between two rotations, two translation and finally a translation and an
anisotropic swelling. The composition between the FPT of the transfor-
mation of the FPT of its inverse is carried out, for different numbers of
squarings. The errors displayed are relative with respect the polyaffine
transformation considered: the displacements are expected to be close

to zero (i.e. the resulting transformation is expected to be close to the
identity), and the errors are measured with respect to the displacements
observed originally. One can see that an excellent accuracy of inver-
sion is already achieved with 6 squarings. As expected, the maximal
errors are observed at the boundary of the grid, which can be fixed for
example by using a larger grid to compute the FPT

tice to a high computational cost. To obtain short computa-
tion times (typically 10 minutes for whole 3D volumes in the
locally affine case), we proposed in [5, 6] a multi-resolution
and robust block-matching scheme for the locally affine reg-
istration of multiple components. This algorithm estimates
affine components using the direct fusion. The FPT is used
in a final step to ensure the invertibility of the final transfor-
mation, as well as to compute its inverse. We have observed
experimentally that this yields quite satisfactory results, as
we will see below.

Let us consider a real 3D example: the registration, of
an atlas of 216 × 180 × 180 voxels to a T1-weighted MR
image. Seven structures of interest are considered to define
the locally affine transformation: eyes (1 affine component
each), cerebellum (2 components), brain stem (2 compo-
nents), optic chiasm (1 component), 1 supplementary com-
ponent (set to the identity) elsewhere. Weight functions are
defined in the atlas geometry using mathematical morphol-
ogy and a smoothing kernel in a preliminary step and remain
unchanged during the registration process.

Philosophy of our Locally Affine Algorithm The idea is to
register finely our structures of interest, with very smooth
local transformations. In contrast, many registration algo-
rithms are able to register the intensities all over the im-
ages of two anatomies, but this is done in most cases at the
cost of the regularity of the resulting spatial transformation.
This lack of smoothness leads to serious doubts regarding
the anatomical likelihood of such transformations.

Figure 13 provides a comparison between the typical
smoothness of dense transformation and locally affine reg-
istration results. Interestingly, much smoother deformations
are obtained in the locally affine case with an accuracy in
the structures of interest which is comparable to the dense

transformation case of [21]. More details on this subject can
be found in [6].

LEPTs as a Powerful Post-Processing Tool As we men-
tioned before, our locally affine registration algorithm esti-
mates affine components using the direct fusion. The FPT
is used in a final step to ensure the invertibility of the final
transformation, as well as to compute its inverse. Here, the
scaling used in 28 and the FPT is computed in 40 s on a
Pentium 4 Xeon™ 2.8 GHz on a 216 × 180 × 180 regular
grid.

As shown by Fig. 14, the direct fusion of components
estimated by our locally affine algorithm can lead to sin-
gularities, which is not the case when the FPT is used. Re-
markably, both fusions are very close outside of regions with
singularities. This means that no artifacts are introduced by
the FPT, which justifies a posteriori the estimation of affine
components with the (faster) direct fusion.

4 Conclusion and Perspectives

In this work, we have presented a novel framework to fuse
rigid or affine components into a global transformation,
called Log-Euclidean polyaffine. Similarly to the previous
polyaffine framework of [2], it guarantees the invertibility
of the result. However, contrary to the previous framework,
this is achieved with very intuitive properties: for example
the inverse of a LEPT is a LEPT with identical weights and
inverted affine components. Moreover, this novel fusion is
affine-invariant, i.e. does not depend on the choice of co-
ordinate system. We have also shown that remarkably, and
contrary to previous polyaffine transformations, the specific
properties of LEPTs allow their fast computations on regular
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Fig. 13 Comparison of the smoothness of deformations for our lo-
cally affine vs. a dense deformation algorithm. An atlas containing a
MR T1 image of a reference subject and the segmentation of structures
of interest (eyes, brain stem, cerebellum, optic chiasm) is registered to
the MR T1 image of a patient using a dense transformation algorithm
[21] on the left and the locally affine registration algorithm based on
the fast polyaffine framework proposed in [6] on the right. We display
on top: the deformation of a regular grid by both transformation on an
axial slice. One can clearly see that there are locally very large defor-
mations with the dense deformation algorithm while the deformation
remains globally very smooth with the locally affine algorithm. Middle
and bottom: we display the contours of the structures of interest of the
atlas deformed into the geometry of the patient image. The contours
appear to be smoother in the locally affine case, although the accuracy
is comparable with both methods

grids, with an algorithm called the ‘Fast Polyaffine Trans-
form’, whose efficiency is somehow comparable to that of
the Fast Fourier Transform.

In the example of locally affine 3D registration presented
here, we use LEPTs in a final step to fuse the affine compo-
nents estimated during the algorithm of [5]. With the FPT,
this is done very efficiently. Remarkably, the novel fusion

Fig. 14 Singularity removal with LEPTs. A 3D regular grid is de-
formed with the locally affine transformation obtained with the algo-
rithm of [5, 6], two different axial slices are displayed on top and bot-
tom. On the left: result of the direct fusion. One can notice small loops
that locally disrupt the regular structure of the grid at the boundary
of two regions of influence. They indicate places where the deforma-
tion is not diffeomorphic. On the right: result of the polyaffine fusion.
These singularities of the direct fusion disappeared with LEPTs, with-
out modifying much the deformation outside the regions where the sin-
gularities were located

is very close to the direct fusion in regions without singu-
larities. This suggests that our novel framework provides a
general and efficient way of fusing local rigid or affine de-
formations into a global invertible transformation without
introducing artifacts, independently of the way local affine
deformations are first estimated.
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